Short echo time in vivo prostate 1H-MRSI

Visualization of short echo time (TE) metabolites in prostate magnetic resonance spectroscopic imaging is difficult due to lipid contamination and pulse timing constraints. In this work, we present a modified pulse sequence to permit short echo time (TE=40ms) acquisitions with reduced lipid contamin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance imaging 2012-02, Vol.30 (2), p.195-204
Hauptverfasser: Venugopal, Niranjan, McCurdy, Boyd, Al Mehairi, Salem, Alamri, Aziz, Sandhu, Gurdarshan S., Sivalingam, Sri, Drachenberg, Darrel, Ryner, Lawrence
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue 2
container_start_page 195
container_title Magnetic resonance imaging
container_volume 30
creator Venugopal, Niranjan
McCurdy, Boyd
Al Mehairi, Salem
Alamri, Aziz
Sandhu, Gurdarshan S.
Sivalingam, Sri
Drachenberg, Darrel
Ryner, Lawrence
description Visualization of short echo time (TE) metabolites in prostate magnetic resonance spectroscopic imaging is difficult due to lipid contamination and pulse timing constraints. In this work, we present a modified pulse sequence to permit short echo time (TE=40ms) acquisitions with reduced lipid contamination for the detection of short TE metabolites. The modified pulse sequence employs the conformal voxel MRS (CV-MRS) technique, which automatically optimizes the placement of spatial saturation planes to adapt the excitation volume to the shape of the prostate, thus reducing lipid contamination in prostate magnetic resonance spectroscopic imaging (MRSI). Metabolites were measured and assessed using a modified version of LCModel for analysis of in vivo prostate spectra. We demonstrate the feasibility of acquiring high quality spectra at short TEs, and show the measurement of short TE metabolites, myo-inositol, scyllo-inositol, taurine and glutamine/glutamate for both single and multi-voxel acquisitions. In single voxels experiments, the reduction in TE resulted in 57% improvement in the signal-to-noise ratio (SNR). Additional 3D MRSI experiments comparing short (TE=40 ms), and long (TE=130 ms) TE acquisitions revealed a 35% improvement in the number of adequately fitted metabolite peaks (775 voxels over all subjects). This resulted in a 42±24% relative improvement in the number of voxels with detectable citrate that were well-fitted using LCmodel. In this study, we demonstrate that high quality prostate spectra can be obtained by reducing the TE to 40 ms to detect short T2 metabolites, while maintaining positive signal intensity of the spin-coupled citrate multiplet and managing lipid suppression.
doi_str_mv 10.1016/j.mri.2011.09.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_923198011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0730725X11003523</els_id><sourcerecordid>923198011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2294-e51fba7c9d591c0fe5f5482c0bfff11dffff7dd5efdfe8a1a7115bb2041520373</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRbK0-gBfJTS-JM5tsk8WTFLWFimAVvC3J7izd0jQ1mxZ8e7e0etTLzOX7f2Y-xi4REgQc3i6SunUJB8QEZAIcjlgfizyNRSGzY9aHPIU45-Kjx868XwCA4Kk4ZT3OUWTDIuuzm9m8abuI9LyJOldT5FbR1m2baN02vis7inAcP7_OJufsxJZLTxeHPWDvjw9vo3E8fXmajO6nseZcZjEJtFWZa2mERA2WhBVZwTVU1lpEE6bNjRFkjaWixDJHFFXFIUPBIc3TAbve94YDPjfkO1U7r2m5LFfUbLySPEVZhJf_J1GkRRasBBL3pA5P-ZasWreuLtsvhaB2JtVCBZNqZ1KBVPvM1aF9U9VkfhM_6gJwtwco2Ng6apXXjlaajGtJd8o07o_6b6_wgdk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>915384020</pqid></control><display><type>article</type><title>Short echo time in vivo prostate 1H-MRSI</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Venugopal, Niranjan ; McCurdy, Boyd ; Al Mehairi, Salem ; Alamri, Aziz ; Sandhu, Gurdarshan S. ; Sivalingam, Sri ; Drachenberg, Darrel ; Ryner, Lawrence</creator><creatorcontrib>Venugopal, Niranjan ; McCurdy, Boyd ; Al Mehairi, Salem ; Alamri, Aziz ; Sandhu, Gurdarshan S. ; Sivalingam, Sri ; Drachenberg, Darrel ; Ryner, Lawrence</creatorcontrib><description>Visualization of short echo time (TE) metabolites in prostate magnetic resonance spectroscopic imaging is difficult due to lipid contamination and pulse timing constraints. In this work, we present a modified pulse sequence to permit short echo time (TE=40ms) acquisitions with reduced lipid contamination for the detection of short TE metabolites. The modified pulse sequence employs the conformal voxel MRS (CV-MRS) technique, which automatically optimizes the placement of spatial saturation planes to adapt the excitation volume to the shape of the prostate, thus reducing lipid contamination in prostate magnetic resonance spectroscopic imaging (MRSI). Metabolites were measured and assessed using a modified version of LCModel for analysis of in vivo prostate spectra. We demonstrate the feasibility of acquiring high quality spectra at short TEs, and show the measurement of short TE metabolites, myo-inositol, scyllo-inositol, taurine and glutamine/glutamate for both single and multi-voxel acquisitions. In single voxels experiments, the reduction in TE resulted in 57% improvement in the signal-to-noise ratio (SNR). Additional 3D MRSI experiments comparing short (TE=40 ms), and long (TE=130 ms) TE acquisitions revealed a 35% improvement in the number of adequately fitted metabolite peaks (775 voxels over all subjects). This resulted in a 42±24% relative improvement in the number of voxels with detectable citrate that were well-fitted using LCmodel. In this study, we demonstrate that high quality prostate spectra can be obtained by reducing the TE to 40 ms to detect short T2 metabolites, while maintaining positive signal intensity of the spin-coupled citrate multiplet and managing lipid suppression.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/j.mri.2011.09.020</identifier><identifier>PMID: 22154684</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Adult ; Aged ; Algorithms ; Conformal voxel ; Humans ; LCModel ; Lipid contamination ; Lipid suppression ; Magnetic Resonance Imaging - methods ; Magnetic resonance spectroscopic imaging ; Magnetic Resonance Spectroscopy - methods ; Male ; Middle Aged ; Prostate - anatomy &amp; histology ; Prostate - metabolism ; Prostate cancer ; Protons ; Reproducibility of Results ; Sensitivity and Specificity ; Short TE</subject><ispartof>Magnetic resonance imaging, 2012-02, Vol.30 (2), p.195-204</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2294-e51fba7c9d591c0fe5f5482c0bfff11dffff7dd5efdfe8a1a7115bb2041520373</citedby><cites>FETCH-LOGICAL-c2294-e51fba7c9d591c0fe5f5482c0bfff11dffff7dd5efdfe8a1a7115bb2041520373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0730725X11003523$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22154684$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Venugopal, Niranjan</creatorcontrib><creatorcontrib>McCurdy, Boyd</creatorcontrib><creatorcontrib>Al Mehairi, Salem</creatorcontrib><creatorcontrib>Alamri, Aziz</creatorcontrib><creatorcontrib>Sandhu, Gurdarshan S.</creatorcontrib><creatorcontrib>Sivalingam, Sri</creatorcontrib><creatorcontrib>Drachenberg, Darrel</creatorcontrib><creatorcontrib>Ryner, Lawrence</creatorcontrib><title>Short echo time in vivo prostate 1H-MRSI</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Visualization of short echo time (TE) metabolites in prostate magnetic resonance spectroscopic imaging is difficult due to lipid contamination and pulse timing constraints. In this work, we present a modified pulse sequence to permit short echo time (TE=40ms) acquisitions with reduced lipid contamination for the detection of short TE metabolites. The modified pulse sequence employs the conformal voxel MRS (CV-MRS) technique, which automatically optimizes the placement of spatial saturation planes to adapt the excitation volume to the shape of the prostate, thus reducing lipid contamination in prostate magnetic resonance spectroscopic imaging (MRSI). Metabolites were measured and assessed using a modified version of LCModel for analysis of in vivo prostate spectra. We demonstrate the feasibility of acquiring high quality spectra at short TEs, and show the measurement of short TE metabolites, myo-inositol, scyllo-inositol, taurine and glutamine/glutamate for both single and multi-voxel acquisitions. In single voxels experiments, the reduction in TE resulted in 57% improvement in the signal-to-noise ratio (SNR). Additional 3D MRSI experiments comparing short (TE=40 ms), and long (TE=130 ms) TE acquisitions revealed a 35% improvement in the number of adequately fitted metabolite peaks (775 voxels over all subjects). This resulted in a 42±24% relative improvement in the number of voxels with detectable citrate that were well-fitted using LCmodel. In this study, we demonstrate that high quality prostate spectra can be obtained by reducing the TE to 40 ms to detect short T2 metabolites, while maintaining positive signal intensity of the spin-coupled citrate multiplet and managing lipid suppression.</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Conformal voxel</subject><subject>Humans</subject><subject>LCModel</subject><subject>Lipid contamination</subject><subject>Lipid suppression</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic resonance spectroscopic imaging</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Prostate - anatomy &amp; histology</subject><subject>Prostate - metabolism</subject><subject>Prostate cancer</subject><subject>Protons</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Short TE</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFKw0AQhhdRbK0-gBfJTS-JM5tsk8WTFLWFimAVvC3J7izd0jQ1mxZ8e7e0etTLzOX7f2Y-xi4REgQc3i6SunUJB8QEZAIcjlgfizyNRSGzY9aHPIU45-Kjx868XwCA4Kk4ZT3OUWTDIuuzm9m8abuI9LyJOldT5FbR1m2baN02vis7inAcP7_OJufsxJZLTxeHPWDvjw9vo3E8fXmajO6nseZcZjEJtFWZa2mERA2WhBVZwTVU1lpEE6bNjRFkjaWixDJHFFXFIUPBIc3TAbve94YDPjfkO1U7r2m5LFfUbLySPEVZhJf_J1GkRRasBBL3pA5P-ZasWreuLtsvhaB2JtVCBZNqZ1KBVPvM1aF9U9VkfhM_6gJwtwco2Ng6apXXjlaajGtJd8o07o_6b6_wgdk</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Venugopal, Niranjan</creator><creator>McCurdy, Boyd</creator><creator>Al Mehairi, Salem</creator><creator>Alamri, Aziz</creator><creator>Sandhu, Gurdarshan S.</creator><creator>Sivalingam, Sri</creator><creator>Drachenberg, Darrel</creator><creator>Ryner, Lawrence</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201202</creationdate><title>Short echo time in vivo prostate 1H-MRSI</title><author>Venugopal, Niranjan ; McCurdy, Boyd ; Al Mehairi, Salem ; Alamri, Aziz ; Sandhu, Gurdarshan S. ; Sivalingam, Sri ; Drachenberg, Darrel ; Ryner, Lawrence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2294-e51fba7c9d591c0fe5f5482c0bfff11dffff7dd5efdfe8a1a7115bb2041520373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Conformal voxel</topic><topic>Humans</topic><topic>LCModel</topic><topic>Lipid contamination</topic><topic>Lipid suppression</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic resonance spectroscopic imaging</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Prostate - anatomy &amp; histology</topic><topic>Prostate - metabolism</topic><topic>Prostate cancer</topic><topic>Protons</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Short TE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venugopal, Niranjan</creatorcontrib><creatorcontrib>McCurdy, Boyd</creatorcontrib><creatorcontrib>Al Mehairi, Salem</creatorcontrib><creatorcontrib>Alamri, Aziz</creatorcontrib><creatorcontrib>Sandhu, Gurdarshan S.</creatorcontrib><creatorcontrib>Sivalingam, Sri</creatorcontrib><creatorcontrib>Drachenberg, Darrel</creatorcontrib><creatorcontrib>Ryner, Lawrence</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venugopal, Niranjan</au><au>McCurdy, Boyd</au><au>Al Mehairi, Salem</au><au>Alamri, Aziz</au><au>Sandhu, Gurdarshan S.</au><au>Sivalingam, Sri</au><au>Drachenberg, Darrel</au><au>Ryner, Lawrence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short echo time in vivo prostate 1H-MRSI</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2012-02</date><risdate>2012</risdate><volume>30</volume><issue>2</issue><spage>195</spage><epage>204</epage><pages>195-204</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><abstract>Visualization of short echo time (TE) metabolites in prostate magnetic resonance spectroscopic imaging is difficult due to lipid contamination and pulse timing constraints. In this work, we present a modified pulse sequence to permit short echo time (TE=40ms) acquisitions with reduced lipid contamination for the detection of short TE metabolites. The modified pulse sequence employs the conformal voxel MRS (CV-MRS) technique, which automatically optimizes the placement of spatial saturation planes to adapt the excitation volume to the shape of the prostate, thus reducing lipid contamination in prostate magnetic resonance spectroscopic imaging (MRSI). Metabolites were measured and assessed using a modified version of LCModel for analysis of in vivo prostate spectra. We demonstrate the feasibility of acquiring high quality spectra at short TEs, and show the measurement of short TE metabolites, myo-inositol, scyllo-inositol, taurine and glutamine/glutamate for both single and multi-voxel acquisitions. In single voxels experiments, the reduction in TE resulted in 57% improvement in the signal-to-noise ratio (SNR). Additional 3D MRSI experiments comparing short (TE=40 ms), and long (TE=130 ms) TE acquisitions revealed a 35% improvement in the number of adequately fitted metabolite peaks (775 voxels over all subjects). This resulted in a 42±24% relative improvement in the number of voxels with detectable citrate that were well-fitted using LCmodel. In this study, we demonstrate that high quality prostate spectra can be obtained by reducing the TE to 40 ms to detect short T2 metabolites, while maintaining positive signal intensity of the spin-coupled citrate multiplet and managing lipid suppression.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>22154684</pmid><doi>10.1016/j.mri.2011.09.020</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-725X
ispartof Magnetic resonance imaging, 2012-02, Vol.30 (2), p.195-204
issn 0730-725X
1873-5894
language eng
recordid cdi_proquest_miscellaneous_923198011
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Aged
Algorithms
Conformal voxel
Humans
LCModel
Lipid contamination
Lipid suppression
Magnetic Resonance Imaging - methods
Magnetic resonance spectroscopic imaging
Magnetic Resonance Spectroscopy - methods
Male
Middle Aged
Prostate - anatomy & histology
Prostate - metabolism
Prostate cancer
Protons
Reproducibility of Results
Sensitivity and Specificity
Short TE
title Short echo time in vivo prostate 1H-MRSI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20echo%20time%20in%20vivo%20prostate%201H-MRSI&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Venugopal,%20Niranjan&rft.date=2012-02&rft.volume=30&rft.issue=2&rft.spage=195&rft.epage=204&rft.pages=195-204&rft.issn=0730-725X&rft.eissn=1873-5894&rft_id=info:doi/10.1016/j.mri.2011.09.020&rft_dat=%3Cproquest_cross%3E923198011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=915384020&rft_id=info:pmid/22154684&rft_els_id=S0730725X11003523&rfr_iscdi=true