Anelastic Internal Wave Packet Evolution and Stability

As upward-propagating anelastic internal gravity wave packets grow in amplitude, nonlinear effects develop as a result of interactions with the horizontal mean flow that they induce. This qualitatively alters the structure of the wave packet. The weakly nonlinear dynamics are well captured by the no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2011-12, Vol.68 (12), p.2844-2859
Hauptverfasser: DOSSER, Hayley V, SUTHERLAND, Bruce R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2859
container_issue 12
container_start_page 2844
container_title Journal of the atmospheric sciences
container_volume 68
creator DOSSER, Hayley V
SUTHERLAND, Bruce R
description As upward-propagating anelastic internal gravity wave packets grow in amplitude, nonlinear effects develop as a result of interactions with the horizontal mean flow that they induce. This qualitatively alters the structure of the wave packet. The weakly nonlinear dynamics are well captured by the nonlinear Schrödinger equation, which is derived here for anelastic waves. In particular, this predicts that strongly nonhydrostatic waves are modulationally unstable and so the wave packet narrows and grows more rapidly in amplitude than the exponential anelastic growth rate. More hydrostatic waves are modulationally stable and so their amplitude grows less rapidly. The marginal case between stability and instability occurs for waves propagating at the fastest vertical group velocity. Extrapolating these results to waves propagating to higher altitudes (hence attaining larger amplitudes), it is anticipated that modulationally unstable waves should break at lower altitudes and modulationally stable waves should break at higher altitudes than predicted by linear theory. This prediction is borne out by fully nonlinear numerical simulations of the anelastic equations. A range of simulations is performed to quantify where overturning actually occurs.
doi_str_mv 10.1175/jas-d-11-097.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_923197552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>923197552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-e1f23622a37dbbe4499016372bd3cc3213809ec96be58bd5b143173bc04c5aa43</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKtXz4sietmaycdmcyy1flFQqOIxZLNZ2Jru1k220H9vSosHQecyc3jmgXcGoXPAIwDBbxfap2UKkGIpRnCABsAJTjHL5CEaYExIyiTJj9GJ9wsciwgYoGzcWKd9qE3y1ATbNdolH3ptk1dtPm1IpuvW9aFum0Q3ZTIPuqhdHTan6KjSztuzfR-i9_vp2-Qxnb08PE3Gs9QwyUNqoSI0I0RTURaFZUxKDBkVpCipMZQAzbG0RmaF5XlR8gIYBUELg5nhWjM6RNc776prv3rrg1rW3ljndGPb3itJKEjBOYnkzb8kZAJYTmLqiF78Qhdtv00efcAYx4xufZd_QSQnEM_HKY7UaEeZrvW-s5VadfVSdxsFWG2_op7Hc3UXRxW_oiAuXO212hvtqk43pvY_W1EKVMZU39wviV8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821002530</pqid></control><display><type>article</type><title>Anelastic Internal Wave Packet Evolution and Stability</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>DOSSER, Hayley V ; SUTHERLAND, Bruce R</creator><creatorcontrib>DOSSER, Hayley V ; SUTHERLAND, Bruce R</creatorcontrib><description>As upward-propagating anelastic internal gravity wave packets grow in amplitude, nonlinear effects develop as a result of interactions with the horizontal mean flow that they induce. This qualitatively alters the structure of the wave packet. The weakly nonlinear dynamics are well captured by the nonlinear Schrödinger equation, which is derived here for anelastic waves. In particular, this predicts that strongly nonhydrostatic waves are modulationally unstable and so the wave packet narrows and grows more rapidly in amplitude than the exponential anelastic growth rate. More hydrostatic waves are modulationally stable and so their amplitude grows less rapidly. The marginal case between stability and instability occurs for waves propagating at the fastest vertical group velocity. Extrapolating these results to waves propagating to higher altitudes (hence attaining larger amplitudes), it is anticipated that modulationally unstable waves should break at lower altitudes and modulationally stable waves should break at higher altitudes than predicted by linear theory. This prediction is borne out by fully nonlinear numerical simulations of the anelastic equations. A range of simulations is performed to quantify where overturning actually occurs.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/jas-d-11-097.1</identifier><identifier>CODEN: JAHSAK</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Altitude ; Amplitude ; Amplitudes ; Anelasticity ; Atmosphere ; Atmospheric pressure ; Atmospheric sciences ; Computer simulation ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; General circulation models ; Gravity waves ; Group velocity ; Growth rate ; Inertia ; Internal gravity waves ; Internal waves ; Mathematical analysis ; Meteorology ; Nonlinear dynamics ; Nonlinear systems ; Nonlinearity ; Numerical simulations ; Physics of the high neutral atmosphere ; Predictions ; Schrodinger equation ; Stability ; Velocity ; Wave packets ; Wave propagation</subject><ispartof>Journal of the atmospheric sciences, 2011-12, Vol.68 (12), p.2844-2859</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2011</rights><rights>Copyright American Meteorological Society Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-e1f23622a37dbbe4499016372bd3cc3213809ec96be58bd5b143173bc04c5aa43</citedby><cites>FETCH-LOGICAL-c495t-e1f23622a37dbbe4499016372bd3cc3213809ec96be58bd5b143173bc04c5aa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25313992$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DOSSER, Hayley V</creatorcontrib><creatorcontrib>SUTHERLAND, Bruce R</creatorcontrib><title>Anelastic Internal Wave Packet Evolution and Stability</title><title>Journal of the atmospheric sciences</title><description>As upward-propagating anelastic internal gravity wave packets grow in amplitude, nonlinear effects develop as a result of interactions with the horizontal mean flow that they induce. This qualitatively alters the structure of the wave packet. The weakly nonlinear dynamics are well captured by the nonlinear Schrödinger equation, which is derived here for anelastic waves. In particular, this predicts that strongly nonhydrostatic waves are modulationally unstable and so the wave packet narrows and grows more rapidly in amplitude than the exponential anelastic growth rate. More hydrostatic waves are modulationally stable and so their amplitude grows less rapidly. The marginal case between stability and instability occurs for waves propagating at the fastest vertical group velocity. Extrapolating these results to waves propagating to higher altitudes (hence attaining larger amplitudes), it is anticipated that modulationally unstable waves should break at lower altitudes and modulationally stable waves should break at higher altitudes than predicted by linear theory. This prediction is borne out by fully nonlinear numerical simulations of the anelastic equations. A range of simulations is performed to quantify where overturning actually occurs.</description><subject>Altitude</subject><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Anelasticity</subject><subject>Atmosphere</subject><subject>Atmospheric pressure</subject><subject>Atmospheric sciences</subject><subject>Computer simulation</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>General circulation models</subject><subject>Gravity waves</subject><subject>Group velocity</subject><subject>Growth rate</subject><subject>Inertia</subject><subject>Internal gravity waves</subject><subject>Internal waves</subject><subject>Mathematical analysis</subject><subject>Meteorology</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Numerical simulations</subject><subject>Physics of the high neutral atmosphere</subject><subject>Predictions</subject><subject>Schrodinger equation</subject><subject>Stability</subject><subject>Velocity</subject><subject>Wave packets</subject><subject>Wave propagation</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1LAzEQhoMoWKtXz4sietmaycdmcyy1flFQqOIxZLNZ2Jru1k220H9vSosHQecyc3jmgXcGoXPAIwDBbxfap2UKkGIpRnCABsAJTjHL5CEaYExIyiTJj9GJ9wsciwgYoGzcWKd9qE3y1ATbNdolH3ptk1dtPm1IpuvW9aFum0Q3ZTIPuqhdHTan6KjSztuzfR-i9_vp2-Qxnb08PE3Gs9QwyUNqoSI0I0RTURaFZUxKDBkVpCipMZQAzbG0RmaF5XlR8gIYBUELg5nhWjM6RNc776prv3rrg1rW3ljndGPb3itJKEjBOYnkzb8kZAJYTmLqiF78Qhdtv00efcAYx4xufZd_QSQnEM_HKY7UaEeZrvW-s5VadfVSdxsFWG2_op7Hc3UXRxW_oiAuXO212hvtqk43pvY_W1EKVMZU39wviV8</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>DOSSER, Hayley V</creator><creator>SUTHERLAND, Bruce R</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20111201</creationdate><title>Anelastic Internal Wave Packet Evolution and Stability</title><author>DOSSER, Hayley V ; SUTHERLAND, Bruce R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-e1f23622a37dbbe4499016372bd3cc3213809ec96be58bd5b143173bc04c5aa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Altitude</topic><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Anelasticity</topic><topic>Atmosphere</topic><topic>Atmospheric pressure</topic><topic>Atmospheric sciences</topic><topic>Computer simulation</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>General circulation models</topic><topic>Gravity waves</topic><topic>Group velocity</topic><topic>Growth rate</topic><topic>Inertia</topic><topic>Internal gravity waves</topic><topic>Internal waves</topic><topic>Mathematical analysis</topic><topic>Meteorology</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Numerical simulations</topic><topic>Physics of the high neutral atmosphere</topic><topic>Predictions</topic><topic>Schrodinger equation</topic><topic>Stability</topic><topic>Velocity</topic><topic>Wave packets</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DOSSER, Hayley V</creatorcontrib><creatorcontrib>SUTHERLAND, Bruce R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DOSSER, Hayley V</au><au>SUTHERLAND, Bruce R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anelastic Internal Wave Packet Evolution and Stability</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>68</volume><issue>12</issue><spage>2844</spage><epage>2859</epage><pages>2844-2859</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><coden>JAHSAK</coden><abstract>As upward-propagating anelastic internal gravity wave packets grow in amplitude, nonlinear effects develop as a result of interactions with the horizontal mean flow that they induce. This qualitatively alters the structure of the wave packet. The weakly nonlinear dynamics are well captured by the nonlinear Schrödinger equation, which is derived here for anelastic waves. In particular, this predicts that strongly nonhydrostatic waves are modulationally unstable and so the wave packet narrows and grows more rapidly in amplitude than the exponential anelastic growth rate. More hydrostatic waves are modulationally stable and so their amplitude grows less rapidly. The marginal case between stability and instability occurs for waves propagating at the fastest vertical group velocity. Extrapolating these results to waves propagating to higher altitudes (hence attaining larger amplitudes), it is anticipated that modulationally unstable waves should break at lower altitudes and modulationally stable waves should break at higher altitudes than predicted by linear theory. This prediction is borne out by fully nonlinear numerical simulations of the anelastic equations. A range of simulations is performed to quantify where overturning actually occurs.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/jas-d-11-097.1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2011-12, Vol.68 (12), p.2844-2859
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_miscellaneous_923197552
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Altitude
Amplitude
Amplitudes
Anelasticity
Atmosphere
Atmospheric pressure
Atmospheric sciences
Computer simulation
Earth, ocean, space
Exact sciences and technology
External geophysics
General circulation models
Gravity waves
Group velocity
Growth rate
Inertia
Internal gravity waves
Internal waves
Mathematical analysis
Meteorology
Nonlinear dynamics
Nonlinear systems
Nonlinearity
Numerical simulations
Physics of the high neutral atmosphere
Predictions
Schrodinger equation
Stability
Velocity
Wave packets
Wave propagation
title Anelastic Internal Wave Packet Evolution and Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anelastic%20Internal%20Wave%20Packet%20Evolution%20and%20Stability&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=DOSSER,%20Hayley%20V&rft.date=2011-12-01&rft.volume=68&rft.issue=12&rft.spage=2844&rft.epage=2859&rft.pages=2844-2859&rft.issn=0022-4928&rft.eissn=1520-0469&rft.coden=JAHSAK&rft_id=info:doi/10.1175/jas-d-11-097.1&rft_dat=%3Cproquest_cross%3E923197552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821002530&rft_id=info:pmid/&rfr_iscdi=true