Anelastic Internal Wave Packet Evolution and Stability
As upward-propagating anelastic internal gravity wave packets grow in amplitude, nonlinear effects develop as a result of interactions with the horizontal mean flow that they induce. This qualitatively alters the structure of the wave packet. The weakly nonlinear dynamics are well captured by the no...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2011-12, Vol.68 (12), p.2844-2859 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2859 |
---|---|
container_issue | 12 |
container_start_page | 2844 |
container_title | Journal of the atmospheric sciences |
container_volume | 68 |
creator | DOSSER, Hayley V SUTHERLAND, Bruce R |
description | As upward-propagating anelastic internal gravity wave packets grow in amplitude, nonlinear effects develop as a result of interactions with the horizontal mean flow that they induce. This qualitatively alters the structure of the wave packet. The weakly nonlinear dynamics are well captured by the nonlinear Schrödinger equation, which is derived here for anelastic waves. In particular, this predicts that strongly nonhydrostatic waves are modulationally unstable and so the wave packet narrows and grows more rapidly in amplitude than the exponential anelastic growth rate. More hydrostatic waves are modulationally stable and so their amplitude grows less rapidly. The marginal case between stability and instability occurs for waves propagating at the fastest vertical group velocity. Extrapolating these results to waves propagating to higher altitudes (hence attaining larger amplitudes), it is anticipated that modulationally unstable waves should break at lower altitudes and modulationally stable waves should break at higher altitudes than predicted by linear theory. This prediction is borne out by fully nonlinear numerical simulations of the anelastic equations. A range of simulations is performed to quantify where overturning actually occurs. |
doi_str_mv | 10.1175/jas-d-11-097.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_923197552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>923197552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-e1f23622a37dbbe4499016372bd3cc3213809ec96be58bd5b143173bc04c5aa43</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoWKtXz4sietmaycdmcyy1flFQqOIxZLNZ2Jru1k220H9vSosHQecyc3jmgXcGoXPAIwDBbxfap2UKkGIpRnCABsAJTjHL5CEaYExIyiTJj9GJ9wsciwgYoGzcWKd9qE3y1ATbNdolH3ptk1dtPm1IpuvW9aFum0Q3ZTIPuqhdHTan6KjSztuzfR-i9_vp2-Qxnb08PE3Gs9QwyUNqoSI0I0RTURaFZUxKDBkVpCipMZQAzbG0RmaF5XlR8gIYBUELg5nhWjM6RNc776prv3rrg1rW3ljndGPb3itJKEjBOYnkzb8kZAJYTmLqiF78Qhdtv00efcAYx4xufZd_QSQnEM_HKY7UaEeZrvW-s5VadfVSdxsFWG2_op7Hc3UXRxW_oiAuXO212hvtqk43pvY_W1EKVMZU39wviV8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2821002530</pqid></control><display><type>article</type><title>Anelastic Internal Wave Packet Evolution and Stability</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>DOSSER, Hayley V ; SUTHERLAND, Bruce R</creator><creatorcontrib>DOSSER, Hayley V ; SUTHERLAND, Bruce R</creatorcontrib><description>As upward-propagating anelastic internal gravity wave packets grow in amplitude, nonlinear effects develop as a result of interactions with the horizontal mean flow that they induce. This qualitatively alters the structure of the wave packet. The weakly nonlinear dynamics are well captured by the nonlinear Schrödinger equation, which is derived here for anelastic waves. In particular, this predicts that strongly nonhydrostatic waves are modulationally unstable and so the wave packet narrows and grows more rapidly in amplitude than the exponential anelastic growth rate. More hydrostatic waves are modulationally stable and so their amplitude grows less rapidly. The marginal case between stability and instability occurs for waves propagating at the fastest vertical group velocity. Extrapolating these results to waves propagating to higher altitudes (hence attaining larger amplitudes), it is anticipated that modulationally unstable waves should break at lower altitudes and modulationally stable waves should break at higher altitudes than predicted by linear theory. This prediction is borne out by fully nonlinear numerical simulations of the anelastic equations. A range of simulations is performed to quantify where overturning actually occurs.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/jas-d-11-097.1</identifier><identifier>CODEN: JAHSAK</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Altitude ; Amplitude ; Amplitudes ; Anelasticity ; Atmosphere ; Atmospheric pressure ; Atmospheric sciences ; Computer simulation ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; General circulation models ; Gravity waves ; Group velocity ; Growth rate ; Inertia ; Internal gravity waves ; Internal waves ; Mathematical analysis ; Meteorology ; Nonlinear dynamics ; Nonlinear systems ; Nonlinearity ; Numerical simulations ; Physics of the high neutral atmosphere ; Predictions ; Schrodinger equation ; Stability ; Velocity ; Wave packets ; Wave propagation</subject><ispartof>Journal of the atmospheric sciences, 2011-12, Vol.68 (12), p.2844-2859</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2011</rights><rights>Copyright American Meteorological Society Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-e1f23622a37dbbe4499016372bd3cc3213809ec96be58bd5b143173bc04c5aa43</citedby><cites>FETCH-LOGICAL-c495t-e1f23622a37dbbe4499016372bd3cc3213809ec96be58bd5b143173bc04c5aa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25313992$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DOSSER, Hayley V</creatorcontrib><creatorcontrib>SUTHERLAND, Bruce R</creatorcontrib><title>Anelastic Internal Wave Packet Evolution and Stability</title><title>Journal of the atmospheric sciences</title><description>As upward-propagating anelastic internal gravity wave packets grow in amplitude, nonlinear effects develop as a result of interactions with the horizontal mean flow that they induce. This qualitatively alters the structure of the wave packet. The weakly nonlinear dynamics are well captured by the nonlinear Schrödinger equation, which is derived here for anelastic waves. In particular, this predicts that strongly nonhydrostatic waves are modulationally unstable and so the wave packet narrows and grows more rapidly in amplitude than the exponential anelastic growth rate. More hydrostatic waves are modulationally stable and so their amplitude grows less rapidly. The marginal case between stability and instability occurs for waves propagating at the fastest vertical group velocity. Extrapolating these results to waves propagating to higher altitudes (hence attaining larger amplitudes), it is anticipated that modulationally unstable waves should break at lower altitudes and modulationally stable waves should break at higher altitudes than predicted by linear theory. This prediction is borne out by fully nonlinear numerical simulations of the anelastic equations. A range of simulations is performed to quantify where overturning actually occurs.</description><subject>Altitude</subject><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Anelasticity</subject><subject>Atmosphere</subject><subject>Atmospheric pressure</subject><subject>Atmospheric sciences</subject><subject>Computer simulation</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>General circulation models</subject><subject>Gravity waves</subject><subject>Group velocity</subject><subject>Growth rate</subject><subject>Inertia</subject><subject>Internal gravity waves</subject><subject>Internal waves</subject><subject>Mathematical analysis</subject><subject>Meteorology</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Numerical simulations</subject><subject>Physics of the high neutral atmosphere</subject><subject>Predictions</subject><subject>Schrodinger equation</subject><subject>Stability</subject><subject>Velocity</subject><subject>Wave packets</subject><subject>Wave propagation</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1LAzEQhoMoWKtXz4sietmaycdmcyy1flFQqOIxZLNZ2Jru1k220H9vSosHQecyc3jmgXcGoXPAIwDBbxfap2UKkGIpRnCABsAJTjHL5CEaYExIyiTJj9GJ9wsciwgYoGzcWKd9qE3y1ATbNdolH3ptk1dtPm1IpuvW9aFum0Q3ZTIPuqhdHTan6KjSztuzfR-i9_vp2-Qxnb08PE3Gs9QwyUNqoSI0I0RTURaFZUxKDBkVpCipMZQAzbG0RmaF5XlR8gIYBUELg5nhWjM6RNc776prv3rrg1rW3ljndGPb3itJKEjBOYnkzb8kZAJYTmLqiF78Qhdtv00efcAYx4xufZd_QSQnEM_HKY7UaEeZrvW-s5VadfVSdxsFWG2_op7Hc3UXRxW_oiAuXO212hvtqk43pvY_W1EKVMZU39wviV8</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>DOSSER, Hayley V</creator><creator>SUTHERLAND, Bruce R</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20111201</creationdate><title>Anelastic Internal Wave Packet Evolution and Stability</title><author>DOSSER, Hayley V ; SUTHERLAND, Bruce R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-e1f23622a37dbbe4499016372bd3cc3213809ec96be58bd5b143173bc04c5aa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Altitude</topic><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Anelasticity</topic><topic>Atmosphere</topic><topic>Atmospheric pressure</topic><topic>Atmospheric sciences</topic><topic>Computer simulation</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>General circulation models</topic><topic>Gravity waves</topic><topic>Group velocity</topic><topic>Growth rate</topic><topic>Inertia</topic><topic>Internal gravity waves</topic><topic>Internal waves</topic><topic>Mathematical analysis</topic><topic>Meteorology</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Numerical simulations</topic><topic>Physics of the high neutral atmosphere</topic><topic>Predictions</topic><topic>Schrodinger equation</topic><topic>Stability</topic><topic>Velocity</topic><topic>Wave packets</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DOSSER, Hayley V</creatorcontrib><creatorcontrib>SUTHERLAND, Bruce R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DOSSER, Hayley V</au><au>SUTHERLAND, Bruce R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anelastic Internal Wave Packet Evolution and Stability</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>68</volume><issue>12</issue><spage>2844</spage><epage>2859</epage><pages>2844-2859</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><coden>JAHSAK</coden><abstract>As upward-propagating anelastic internal gravity wave packets grow in amplitude, nonlinear effects develop as a result of interactions with the horizontal mean flow that they induce. This qualitatively alters the structure of the wave packet. The weakly nonlinear dynamics are well captured by the nonlinear Schrödinger equation, which is derived here for anelastic waves. In particular, this predicts that strongly nonhydrostatic waves are modulationally unstable and so the wave packet narrows and grows more rapidly in amplitude than the exponential anelastic growth rate. More hydrostatic waves are modulationally stable and so their amplitude grows less rapidly. The marginal case between stability and instability occurs for waves propagating at the fastest vertical group velocity. Extrapolating these results to waves propagating to higher altitudes (hence attaining larger amplitudes), it is anticipated that modulationally unstable waves should break at lower altitudes and modulationally stable waves should break at higher altitudes than predicted by linear theory. This prediction is borne out by fully nonlinear numerical simulations of the anelastic equations. A range of simulations is performed to quantify where overturning actually occurs.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/jas-d-11-097.1</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2011-12, Vol.68 (12), p.2844-2859 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_miscellaneous_923197552 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Altitude Amplitude Amplitudes Anelasticity Atmosphere Atmospheric pressure Atmospheric sciences Computer simulation Earth, ocean, space Exact sciences and technology External geophysics General circulation models Gravity waves Group velocity Growth rate Inertia Internal gravity waves Internal waves Mathematical analysis Meteorology Nonlinear dynamics Nonlinear systems Nonlinearity Numerical simulations Physics of the high neutral atmosphere Predictions Schrodinger equation Stability Velocity Wave packets Wave propagation |
title | Anelastic Internal Wave Packet Evolution and Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anelastic%20Internal%20Wave%20Packet%20Evolution%20and%20Stability&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=DOSSER,%20Hayley%20V&rft.date=2011-12-01&rft.volume=68&rft.issue=12&rft.spage=2844&rft.epage=2859&rft.pages=2844-2859&rft.issn=0022-4928&rft.eissn=1520-0469&rft.coden=JAHSAK&rft_id=info:doi/10.1175/jas-d-11-097.1&rft_dat=%3Cproquest_cross%3E923197552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2821002530&rft_id=info:pmid/&rfr_iscdi=true |