The Creation of a High Equivalent Potential Temperature Reservoir in Tropical Storm Humberto (2001) and Its Possible Role in Storm Deepening
Thirty global positioning system dropwindsondes (GPS sondes) were used to identify and examine the creation of a reservoir of high equivalent potential temperature (θ e ) in the nascent eye of Tropical Storm Humberto (2001). The θ e did not increase in the high surface wind portion of the storm as i...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2012-02, Vol.140 (2), p.492-505 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 505 |
---|---|
container_issue | 2 |
container_start_page | 492 |
container_title | Monthly weather review |
container_volume | 140 |
creator | DOLLING, Klaus P BARNES, Gary M |
description | Thirty global positioning system dropwindsondes (GPS sondes) were used to identify and examine the creation of a reservoir of high equivalent potential temperature (θ
e
) in the nascent eye of Tropical Storm Humberto (2001). The θ
e
did not increase in the high surface wind portion of the storm as it does in mature hurricanes; instead air spiraled into the light-wind center of the developing storm where it was trapped by subsidence under a mesoscale convectively generated vortex (MCV). An energy budget revealed that the inflow column took 7 h to reach the storm center during which a combined average surface enthalpy flux of ~230 W m
−2
was diagnosed via the bulk aerodynamic equations. This estimate is close to the 250 W m
−2
required for balance based on the energy acquired by the column. The high θ
e
in the lowest kilometer, overlain by a near dry-adiabatic layer under the anvil base, resulted in convective available potential energy (CAPE) exceeding 2500 m
2
s
−2
. This conditionally unstable air later served as fuel for the convection within the nascent eyewall. The authors speculate that CAPE of such a large magnitude could accelerate the updraft and stretch the vorticity field, essentially turning garden-variety cumulonimbi into the vortical hot towers argued by several researchers to play a role in tropical cyclone formation and intensification. |
doi_str_mv | 10.1175/mwr-d-11-00068.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_923194196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>923194196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-3699866c48b77a84910eb67db738537585e8f61f4677dd905ae7090a181c97b23</originalsourceid><addsrcrecordid>eNp10U1v1DAQBmALgcRSuHO0QAg4pPj744i2ha1UBCqLOFpOMmldJXFqO0X8B340LltxQOLi8eF5x9YMQs8pOaZUy3fTj9T0DaUNIUSZY_oAbahkpCHC8odoQwjTDVFCPEZPcr6-Q0qwDfq1vwK8TeBLiDOOA_Z4Fy6v8OnNGm79CHPBX2KpJfgR72FaIPmyJsAXkCHdxpBwmPE-xSV0VXwtMU14t04tpBLxG0YIfYv93OOzkmunnEM71nCsR80d-AnAAnOYL5-iR4MfMzy7r0fo24fT_XbXnH_-eLZ9f950QpnScGWtUaoTptXaG2EpgVbpvtXcSK6lkWAGRQehtO57S6QHTSzx1NDO6pbxI_T60HdJ8WaFXNwUcgfj6GeIa3aWcWoFtarKF__I67imuX6uIkUNr29X9PJ_iBmmmZKGi6rIQXWpjiHB4JYUJp9-Okrc3Qrdp-8X7qRe3Z8VOlojr-4b-1ynOyQ_dyH_zTEpNeNa899BOZn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827265834</pqid></control><display><type>article</type><title>The Creation of a High Equivalent Potential Temperature Reservoir in Tropical Storm Humberto (2001) and Its Possible Role in Storm Deepening</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>DOLLING, Klaus P ; BARNES, Gary M</creator><creatorcontrib>DOLLING, Klaus P ; BARNES, Gary M</creatorcontrib><description>Thirty global positioning system dropwindsondes (GPS sondes) were used to identify and examine the creation of a reservoir of high equivalent potential temperature (θ
e
) in the nascent eye of Tropical Storm Humberto (2001). The θ
e
did not increase in the high surface wind portion of the storm as it does in mature hurricanes; instead air spiraled into the light-wind center of the developing storm where it was trapped by subsidence under a mesoscale convectively generated vortex (MCV). An energy budget revealed that the inflow column took 7 h to reach the storm center during which a combined average surface enthalpy flux of ~230 W m
−2
was diagnosed via the bulk aerodynamic equations. This estimate is close to the 250 W m
−2
required for balance based on the energy acquired by the column. The high θ
e
in the lowest kilometer, overlain by a near dry-adiabatic layer under the anvil base, resulted in convective available potential energy (CAPE) exceeding 2500 m
2
s
−2
. This conditionally unstable air later served as fuel for the convection within the nascent eyewall. The authors speculate that CAPE of such a large magnitude could accelerate the updraft and stretch the vorticity field, essentially turning garden-variety cumulonimbi into the vortical hot towers argued by several researchers to play a role in tropical cyclone formation and intensification.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/mwr-d-11-00068.1</identifier><identifier>CODEN: MWREAB</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Adiabatic ; Aerodynamics ; Aircraft ; Anvils ; Control algorithms ; Convection ; Convective available potential energy ; Cyclones ; Earth, ocean, space ; Energy budget ; Enthalpy ; Equivalence ; Equivalent potential temperature ; Exact sciences and technology ; External geophysics ; Global Positioning System ; Global positioning systems ; GPS ; Hurricanes ; Inflow ; Light ; Mathematical analysis ; Mesoscale vortexes ; Meteorology ; Positioning systems ; Potential energy ; Potential temperature ; Quality control ; Radiosondes ; Reservoirs ; Satellites ; Software ; Storms ; Surface wind ; Tropical cyclone formation ; Tropical cyclones ; Tropical depressions ; Tropical storms ; Updraft ; Vorticity ; Wind</subject><ispartof>Monthly weather review, 2012-02, Vol.140 (2), p.492-505</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2012</rights><rights>Copyright American Meteorological Society Feb 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-3699866c48b77a84910eb67db738537585e8f61f4677dd905ae7090a181c97b23</citedby><cites>FETCH-LOGICAL-c468t-3699866c48b77a84910eb67db738537585e8f61f4677dd905ae7090a181c97b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25572377$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DOLLING, Klaus P</creatorcontrib><creatorcontrib>BARNES, Gary M</creatorcontrib><title>The Creation of a High Equivalent Potential Temperature Reservoir in Tropical Storm Humberto (2001) and Its Possible Role in Storm Deepening</title><title>Monthly weather review</title><description>Thirty global positioning system dropwindsondes (GPS sondes) were used to identify and examine the creation of a reservoir of high equivalent potential temperature (θ
e
) in the nascent eye of Tropical Storm Humberto (2001). The θ
e
did not increase in the high surface wind portion of the storm as it does in mature hurricanes; instead air spiraled into the light-wind center of the developing storm where it was trapped by subsidence under a mesoscale convectively generated vortex (MCV). An energy budget revealed that the inflow column took 7 h to reach the storm center during which a combined average surface enthalpy flux of ~230 W m
−2
was diagnosed via the bulk aerodynamic equations. This estimate is close to the 250 W m
−2
required for balance based on the energy acquired by the column. The high θ
e
in the lowest kilometer, overlain by a near dry-adiabatic layer under the anvil base, resulted in convective available potential energy (CAPE) exceeding 2500 m
2
s
−2
. This conditionally unstable air later served as fuel for the convection within the nascent eyewall. The authors speculate that CAPE of such a large magnitude could accelerate the updraft and stretch the vorticity field, essentially turning garden-variety cumulonimbi into the vortical hot towers argued by several researchers to play a role in tropical cyclone formation and intensification.</description><subject>Adiabatic</subject><subject>Aerodynamics</subject><subject>Aircraft</subject><subject>Anvils</subject><subject>Control algorithms</subject><subject>Convection</subject><subject>Convective available potential energy</subject><subject>Cyclones</subject><subject>Earth, ocean, space</subject><subject>Energy budget</subject><subject>Enthalpy</subject><subject>Equivalence</subject><subject>Equivalent potential temperature</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Global Positioning System</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Hurricanes</subject><subject>Inflow</subject><subject>Light</subject><subject>Mathematical analysis</subject><subject>Mesoscale vortexes</subject><subject>Meteorology</subject><subject>Positioning systems</subject><subject>Potential energy</subject><subject>Potential temperature</subject><subject>Quality control</subject><subject>Radiosondes</subject><subject>Reservoirs</subject><subject>Satellites</subject><subject>Software</subject><subject>Storms</subject><subject>Surface wind</subject><subject>Tropical cyclone formation</subject><subject>Tropical cyclones</subject><subject>Tropical depressions</subject><subject>Tropical storms</subject><subject>Updraft</subject><subject>Vorticity</subject><subject>Wind</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10U1v1DAQBmALgcRSuHO0QAg4pPj744i2ha1UBCqLOFpOMmldJXFqO0X8B340LltxQOLi8eF5x9YMQs8pOaZUy3fTj9T0DaUNIUSZY_oAbahkpCHC8odoQwjTDVFCPEZPcr6-Q0qwDfq1vwK8TeBLiDOOA_Z4Fy6v8OnNGm79CHPBX2KpJfgR72FaIPmyJsAXkCHdxpBwmPE-xSV0VXwtMU14t04tpBLxG0YIfYv93OOzkmunnEM71nCsR80d-AnAAnOYL5-iR4MfMzy7r0fo24fT_XbXnH_-eLZ9f950QpnScGWtUaoTptXaG2EpgVbpvtXcSK6lkWAGRQehtO57S6QHTSzx1NDO6pbxI_T60HdJ8WaFXNwUcgfj6GeIa3aWcWoFtarKF__I67imuX6uIkUNr29X9PJ_iBmmmZKGi6rIQXWpjiHB4JYUJp9-Okrc3Qrdp-8X7qRe3Z8VOlojr-4b-1ynOyQ_dyH_zTEpNeNa899BOZn0</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>DOLLING, Klaus P</creator><creator>BARNES, Gary M</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20120201</creationdate><title>The Creation of a High Equivalent Potential Temperature Reservoir in Tropical Storm Humberto (2001) and Its Possible Role in Storm Deepening</title><author>DOLLING, Klaus P ; BARNES, Gary M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-3699866c48b77a84910eb67db738537585e8f61f4677dd905ae7090a181c97b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adiabatic</topic><topic>Aerodynamics</topic><topic>Aircraft</topic><topic>Anvils</topic><topic>Control algorithms</topic><topic>Convection</topic><topic>Convective available potential energy</topic><topic>Cyclones</topic><topic>Earth, ocean, space</topic><topic>Energy budget</topic><topic>Enthalpy</topic><topic>Equivalence</topic><topic>Equivalent potential temperature</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Global Positioning System</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Hurricanes</topic><topic>Inflow</topic><topic>Light</topic><topic>Mathematical analysis</topic><topic>Mesoscale vortexes</topic><topic>Meteorology</topic><topic>Positioning systems</topic><topic>Potential energy</topic><topic>Potential temperature</topic><topic>Quality control</topic><topic>Radiosondes</topic><topic>Reservoirs</topic><topic>Satellites</topic><topic>Software</topic><topic>Storms</topic><topic>Surface wind</topic><topic>Tropical cyclone formation</topic><topic>Tropical cyclones</topic><topic>Tropical depressions</topic><topic>Tropical storms</topic><topic>Updraft</topic><topic>Vorticity</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DOLLING, Klaus P</creatorcontrib><creatorcontrib>BARNES, Gary M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DOLLING, Klaus P</au><au>BARNES, Gary M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Creation of a High Equivalent Potential Temperature Reservoir in Tropical Storm Humberto (2001) and Its Possible Role in Storm Deepening</atitle><jtitle>Monthly weather review</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>140</volume><issue>2</issue><spage>492</spage><epage>505</epage><pages>492-505</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><coden>MWREAB</coden><abstract>Thirty global positioning system dropwindsondes (GPS sondes) were used to identify and examine the creation of a reservoir of high equivalent potential temperature (θ
e
) in the nascent eye of Tropical Storm Humberto (2001). The θ
e
did not increase in the high surface wind portion of the storm as it does in mature hurricanes; instead air spiraled into the light-wind center of the developing storm where it was trapped by subsidence under a mesoscale convectively generated vortex (MCV). An energy budget revealed that the inflow column took 7 h to reach the storm center during which a combined average surface enthalpy flux of ~230 W m
−2
was diagnosed via the bulk aerodynamic equations. This estimate is close to the 250 W m
−2
required for balance based on the energy acquired by the column. The high θ
e
in the lowest kilometer, overlain by a near dry-adiabatic layer under the anvil base, resulted in convective available potential energy (CAPE) exceeding 2500 m
2
s
−2
. This conditionally unstable air later served as fuel for the convection within the nascent eyewall. The authors speculate that CAPE of such a large magnitude could accelerate the updraft and stretch the vorticity field, essentially turning garden-variety cumulonimbi into the vortical hot towers argued by several researchers to play a role in tropical cyclone formation and intensification.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/mwr-d-11-00068.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-0644 |
ispartof | Monthly weather review, 2012-02, Vol.140 (2), p.492-505 |
issn | 0027-0644 1520-0493 |
language | eng |
recordid | cdi_proquest_miscellaneous_923194196 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adiabatic Aerodynamics Aircraft Anvils Control algorithms Convection Convective available potential energy Cyclones Earth, ocean, space Energy budget Enthalpy Equivalence Equivalent potential temperature Exact sciences and technology External geophysics Global Positioning System Global positioning systems GPS Hurricanes Inflow Light Mathematical analysis Mesoscale vortexes Meteorology Positioning systems Potential energy Potential temperature Quality control Radiosondes Reservoirs Satellites Software Storms Surface wind Tropical cyclone formation Tropical cyclones Tropical depressions Tropical storms Updraft Vorticity Wind |
title | The Creation of a High Equivalent Potential Temperature Reservoir in Tropical Storm Humberto (2001) and Its Possible Role in Storm Deepening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Creation%20of%20a%20High%20Equivalent%20Potential%20Temperature%20Reservoir%20in%20Tropical%20Storm%20Humberto%20(2001)%20and%20Its%20Possible%20Role%20in%20Storm%20Deepening&rft.jtitle=Monthly%20weather%20review&rft.au=DOLLING,%20Klaus%20P&rft.date=2012-02-01&rft.volume=140&rft.issue=2&rft.spage=492&rft.epage=505&rft.pages=492-505&rft.issn=0027-0644&rft.eissn=1520-0493&rft.coden=MWREAB&rft_id=info:doi/10.1175/mwr-d-11-00068.1&rft_dat=%3Cproquest_cross%3E923194196%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827265834&rft_id=info:pmid/&rfr_iscdi=true |