Synthesis of 9-phosphonoalkyl and 9-phosphonoalkoxyalkyl purines: Evaluation of their ability to act as inhibitors of Plasmodium falciparum, Plasmodium vivax and human hypoxanthine–guanine–(xanthine) phosphoribosyltransferases
The purine salvage enzyme, hypoxanthine–guanine–(xanthine) phosphoribosyltransferase [HG(X)PRT], catalyses the synthesis of the purine nucleoside monophosphates, IMP, GMP or XMP essential for DNA/RNA production. In protozoan parasites, such as Plasmodium, this is the only route available for their s...
Gespeichert in:
Veröffentlicht in: | Bioorganic & medicinal chemistry 2012-01, Vol.20 (2), p.1076-1089 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1089 |
---|---|
container_issue | 2 |
container_start_page | 1076 |
container_title | Bioorganic & medicinal chemistry |
container_volume | 20 |
creator | Česnek, Michal Hocková, Dana Holý, Antonín Dračínský, Martin Baszczyňski, Ondřej Jersey, John de Keough, Dianne T. Guddat, Luke W. |
description | The purine salvage enzyme, hypoxanthine–guanine–(xanthine) phosphoribosyltransferase [HG(X)PRT], catalyses the synthesis of the purine nucleoside monophosphates, IMP, GMP or XMP essential for DNA/RNA production. In protozoan parasites, such as Plasmodium, this is the only route available for their synthesis as they lack the de novo pathway which is present in human cells. Acyclic nucleoside phosphonates (ANPs), analogs of the purine nucleoside monophosphates, have been found to inhibit Plasmodium falciparum (Pf) HGXPRT and Plasmodium vivax (Pv) HGPRT with Ki values as low as 100nM. They arrest parasitemia in cell based assays with IC50 values of the order of 1–10μM. ANPs with phosphonoalkyl and phosphonoalkoxyalkyl moieties linking the purine base and phosphonate group were designed and synthesised to evaluate the influence of this linker on the potency and/or selectivity of the ANPs for the human and malarial enzymes. This data shows that variability in the linker, as well as the positioning of the oxygen in this linker, influences binding. The human enzyme binds the ANPs with Ki values of 0.5μM when the number of atoms in the linker was 5 or 6 atoms. However, the parasite enzymes have little affinity for such long chains unless oxygen is included in the three-position. In comparison, all three enzymes have little affinity for ANPs where the number of atoms linking the base and the phosphonate group is of the order of 2–3 atoms. The chemical nature of the purine base also effects the Ki values. This data shows that both the linker and the purine base play an important role in the binding of the ANPs to these three enzymes. |
doi_str_mv | 10.1016/j.bmc.2011.11.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_923194152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0968089611009709</els_id><sourcerecordid>923194152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-14ded8ce9d5e4ffc005289a25aeb54a9ca5b0019cfd658149c4451a89178aad63</originalsourceid><addsrcrecordid>eNqFUk1v1DAQjRCIbgs_gAv4RpHIYid21oYTqsqHVAmk0rM1sZ2ul8RO7WS1ufEf-Icc-B14my1CHEAay9b4zXvj8cuyJwQvCSbVq82y7tSywIQsU-CS3ssWhFY0L0tB7mcLLCqeYy6qo-w4xg3GuKCCPMyOioKsOOF8kf28nNywNtFG5Bsk8n7tY1rOQ_t1ahE4_VfS76b5qh-DdSa-RudbaEcYrHd7ikRmA4LatnaY0OARqAFBRNatbW0HH26FPrcQO6_t2KEGWmV7CGP38s_01m5hd6u_HjtwaD31fgep1yT649v36xHcfDq9y75Ahz6DrX2c2iGAi40JEE18lD1IOtE8Puwn2dW78y9nH_KLT-8_nr29yBXFfMgJ1UZzZYRmhjaNwpgVXEDBwNSMglDAaoyJUI2uGCdUKEoZAS7SOAF0VZ5kz2fePvib0cRBdjYq07bgjB-jFEVJBCWs-D-SVKxYrThNSDIjVfAxBtPIPtgOwiQJlnsfyI1MPpB7H8gUyQep5umBfaw7o39X3H18AjybAQ14CdfBRnl1mRhYeh7BuCoT4s2MMGleW2uCjMoap4y2wahBam__0cAv6NHWbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>916527784</pqid></control><display><type>article</type><title>Synthesis of 9-phosphonoalkyl and 9-phosphonoalkoxyalkyl purines: Evaluation of their ability to act as inhibitors of Plasmodium falciparum, Plasmodium vivax and human hypoxanthine–guanine–(xanthine) phosphoribosyltransferases</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Česnek, Michal ; Hocková, Dana ; Holý, Antonín ; Dračínský, Martin ; Baszczyňski, Ondřej ; Jersey, John de ; Keough, Dianne T. ; Guddat, Luke W.</creator><creatorcontrib>Česnek, Michal ; Hocková, Dana ; Holý, Antonín ; Dračínský, Martin ; Baszczyňski, Ondřej ; Jersey, John de ; Keough, Dianne T. ; Guddat, Luke W.</creatorcontrib><description>The purine salvage enzyme, hypoxanthine–guanine–(xanthine) phosphoribosyltransferase [HG(X)PRT], catalyses the synthesis of the purine nucleoside monophosphates, IMP, GMP or XMP essential for DNA/RNA production. In protozoan parasites, such as Plasmodium, this is the only route available for their synthesis as they lack the de novo pathway which is present in human cells. Acyclic nucleoside phosphonates (ANPs), analogs of the purine nucleoside monophosphates, have been found to inhibit Plasmodium falciparum (Pf) HGXPRT and Plasmodium vivax (Pv) HGPRT with Ki values as low as 100nM. They arrest parasitemia in cell based assays with IC50 values of the order of 1–10μM. ANPs with phosphonoalkyl and phosphonoalkoxyalkyl moieties linking the purine base and phosphonate group were designed and synthesised to evaluate the influence of this linker on the potency and/or selectivity of the ANPs for the human and malarial enzymes. This data shows that variability in the linker, as well as the positioning of the oxygen in this linker, influences binding. The human enzyme binds the ANPs with Ki values of 0.5μM when the number of atoms in the linker was 5 or 6 atoms. However, the parasite enzymes have little affinity for such long chains unless oxygen is included in the three-position. In comparison, all three enzymes have little affinity for ANPs where the number of atoms linking the base and the phosphonate group is of the order of 2–3 atoms. The chemical nature of the purine base also effects the Ki values. This data shows that both the linker and the purine base play an important role in the binding of the ANPs to these three enzymes.</description><identifier>ISSN: 0968-0896</identifier><identifier>EISSN: 1464-3391</identifier><identifier>DOI: 10.1016/j.bmc.2011.11.034</identifier><identifier>PMID: 22178188</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acyclic nucleoside phosphonates ; Antimalarials - chemical synthesis ; Antimalarials - chemistry ; Antimalarials - pharmacology ; chemistry ; DNA ; Enzyme Activation - drug effects ; enzymes ; Humans ; Hypoxanthine–guanine–xanthine ; inhibitory concentration 50 ; inosine monophosphate ; Kinetics ; Malaria ; nucleosides ; oxygen ; parasitemia ; parasites ; Pentosyltransferases - antagonists & inhibitors ; Pentosyltransferases - genetics ; Pentosyltransferases - metabolism ; phosphonates ; Phosphoribosyltransferase ; Plasmodium falciparum ; Plasmodium falciparum - drug effects ; Plasmodium falciparum - enzymology ; Plasmodium vivax ; Plasmodium vivax - drug effects ; Plasmodium vivax - enzymology ; Protozoan Proteins - antagonists & inhibitors ; Protozoan Proteins - genetics ; Protozoan Proteins - metabolism ; Purines - chemical synthesis ; Purines - chemistry ; Purines - pharmacology ; Recombinant Proteins - antagonists & inhibitors ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; RNA ; xanthine</subject><ispartof>Bioorganic & medicinal chemistry, 2012-01, Vol.20 (2), p.1076-1089</ispartof><rights>2011 Elsevier Ltd</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-14ded8ce9d5e4ffc005289a25aeb54a9ca5b0019cfd658149c4451a89178aad63</citedby><cites>FETCH-LOGICAL-c408t-14ded8ce9d5e4ffc005289a25aeb54a9ca5b0019cfd658149c4451a89178aad63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bmc.2011.11.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22178188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Česnek, Michal</creatorcontrib><creatorcontrib>Hocková, Dana</creatorcontrib><creatorcontrib>Holý, Antonín</creatorcontrib><creatorcontrib>Dračínský, Martin</creatorcontrib><creatorcontrib>Baszczyňski, Ondřej</creatorcontrib><creatorcontrib>Jersey, John de</creatorcontrib><creatorcontrib>Keough, Dianne T.</creatorcontrib><creatorcontrib>Guddat, Luke W.</creatorcontrib><title>Synthesis of 9-phosphonoalkyl and 9-phosphonoalkoxyalkyl purines: Evaluation of their ability to act as inhibitors of Plasmodium falciparum, Plasmodium vivax and human hypoxanthine–guanine–(xanthine) phosphoribosyltransferases</title><title>Bioorganic & medicinal chemistry</title><addtitle>Bioorg Med Chem</addtitle><description>The purine salvage enzyme, hypoxanthine–guanine–(xanthine) phosphoribosyltransferase [HG(X)PRT], catalyses the synthesis of the purine nucleoside monophosphates, IMP, GMP or XMP essential for DNA/RNA production. In protozoan parasites, such as Plasmodium, this is the only route available for their synthesis as they lack the de novo pathway which is present in human cells. Acyclic nucleoside phosphonates (ANPs), analogs of the purine nucleoside monophosphates, have been found to inhibit Plasmodium falciparum (Pf) HGXPRT and Plasmodium vivax (Pv) HGPRT with Ki values as low as 100nM. They arrest parasitemia in cell based assays with IC50 values of the order of 1–10μM. ANPs with phosphonoalkyl and phosphonoalkoxyalkyl moieties linking the purine base and phosphonate group were designed and synthesised to evaluate the influence of this linker on the potency and/or selectivity of the ANPs for the human and malarial enzymes. This data shows that variability in the linker, as well as the positioning of the oxygen in this linker, influences binding. The human enzyme binds the ANPs with Ki values of 0.5μM when the number of atoms in the linker was 5 or 6 atoms. However, the parasite enzymes have little affinity for such long chains unless oxygen is included in the three-position. In comparison, all three enzymes have little affinity for ANPs where the number of atoms linking the base and the phosphonate group is of the order of 2–3 atoms. The chemical nature of the purine base also effects the Ki values. This data shows that both the linker and the purine base play an important role in the binding of the ANPs to these three enzymes.</description><subject>Acyclic nucleoside phosphonates</subject><subject>Antimalarials - chemical synthesis</subject><subject>Antimalarials - chemistry</subject><subject>Antimalarials - pharmacology</subject><subject>chemistry</subject><subject>DNA</subject><subject>Enzyme Activation - drug effects</subject><subject>enzymes</subject><subject>Humans</subject><subject>Hypoxanthine–guanine–xanthine</subject><subject>inhibitory concentration 50</subject><subject>inosine monophosphate</subject><subject>Kinetics</subject><subject>Malaria</subject><subject>nucleosides</subject><subject>oxygen</subject><subject>parasitemia</subject><subject>parasites</subject><subject>Pentosyltransferases - antagonists & inhibitors</subject><subject>Pentosyltransferases - genetics</subject><subject>Pentosyltransferases - metabolism</subject><subject>phosphonates</subject><subject>Phosphoribosyltransferase</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - drug effects</subject><subject>Plasmodium falciparum - enzymology</subject><subject>Plasmodium vivax</subject><subject>Plasmodium vivax - drug effects</subject><subject>Plasmodium vivax - enzymology</subject><subject>Protozoan Proteins - antagonists & inhibitors</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - metabolism</subject><subject>Purines - chemical synthesis</subject><subject>Purines - chemistry</subject><subject>Purines - pharmacology</subject><subject>Recombinant Proteins - antagonists & inhibitors</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA</subject><subject>xanthine</subject><issn>0968-0896</issn><issn>1464-3391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUk1v1DAQjRCIbgs_gAv4RpHIYid21oYTqsqHVAmk0rM1sZ2ul8RO7WS1ufEf-Icc-B14my1CHEAay9b4zXvj8cuyJwQvCSbVq82y7tSywIQsU-CS3ssWhFY0L0tB7mcLLCqeYy6qo-w4xg3GuKCCPMyOioKsOOF8kf28nNywNtFG5Bsk8n7tY1rOQ_t1ahE4_VfS76b5qh-DdSa-RudbaEcYrHd7ikRmA4LatnaY0OARqAFBRNatbW0HH26FPrcQO6_t2KEGWmV7CGP38s_01m5hd6u_HjtwaD31fgep1yT649v36xHcfDq9y75Ahz6DrX2c2iGAi40JEE18lD1IOtE8Puwn2dW78y9nH_KLT-8_nr29yBXFfMgJ1UZzZYRmhjaNwpgVXEDBwNSMglDAaoyJUI2uGCdUKEoZAS7SOAF0VZ5kz2fePvib0cRBdjYq07bgjB-jFEVJBCWs-D-SVKxYrThNSDIjVfAxBtPIPtgOwiQJlnsfyI1MPpB7H8gUyQep5umBfaw7o39X3H18AjybAQ14CdfBRnl1mRhYeh7BuCoT4s2MMGleW2uCjMoap4y2wahBam__0cAv6NHWbA</recordid><startdate>20120115</startdate><enddate>20120115</enddate><creator>Česnek, Michal</creator><creator>Hocková, Dana</creator><creator>Holý, Antonín</creator><creator>Dračínský, Martin</creator><creator>Baszczyňski, Ondřej</creator><creator>Jersey, John de</creator><creator>Keough, Dianne T.</creator><creator>Guddat, Luke W.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20120115</creationdate><title>Synthesis of 9-phosphonoalkyl and 9-phosphonoalkoxyalkyl purines: Evaluation of their ability to act as inhibitors of Plasmodium falciparum, Plasmodium vivax and human hypoxanthine–guanine–(xanthine) phosphoribosyltransferases</title><author>Česnek, Michal ; Hocková, Dana ; Holý, Antonín ; Dračínský, Martin ; Baszczyňski, Ondřej ; Jersey, John de ; Keough, Dianne T. ; Guddat, Luke W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-14ded8ce9d5e4ffc005289a25aeb54a9ca5b0019cfd658149c4451a89178aad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acyclic nucleoside phosphonates</topic><topic>Antimalarials - chemical synthesis</topic><topic>Antimalarials - chemistry</topic><topic>Antimalarials - pharmacology</topic><topic>chemistry</topic><topic>DNA</topic><topic>Enzyme Activation - drug effects</topic><topic>enzymes</topic><topic>Humans</topic><topic>Hypoxanthine–guanine–xanthine</topic><topic>inhibitory concentration 50</topic><topic>inosine monophosphate</topic><topic>Kinetics</topic><topic>Malaria</topic><topic>nucleosides</topic><topic>oxygen</topic><topic>parasitemia</topic><topic>parasites</topic><topic>Pentosyltransferases - antagonists & inhibitors</topic><topic>Pentosyltransferases - genetics</topic><topic>Pentosyltransferases - metabolism</topic><topic>phosphonates</topic><topic>Phosphoribosyltransferase</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - drug effects</topic><topic>Plasmodium falciparum - enzymology</topic><topic>Plasmodium vivax</topic><topic>Plasmodium vivax - drug effects</topic><topic>Plasmodium vivax - enzymology</topic><topic>Protozoan Proteins - antagonists & inhibitors</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - metabolism</topic><topic>Purines - chemical synthesis</topic><topic>Purines - chemistry</topic><topic>Purines - pharmacology</topic><topic>Recombinant Proteins - antagonists & inhibitors</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA</topic><topic>xanthine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Česnek, Michal</creatorcontrib><creatorcontrib>Hocková, Dana</creatorcontrib><creatorcontrib>Holý, Antonín</creatorcontrib><creatorcontrib>Dračínský, Martin</creatorcontrib><creatorcontrib>Baszczyňski, Ondřej</creatorcontrib><creatorcontrib>Jersey, John de</creatorcontrib><creatorcontrib>Keough, Dianne T.</creatorcontrib><creatorcontrib>Guddat, Luke W.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioorganic & medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Česnek, Michal</au><au>Hocková, Dana</au><au>Holý, Antonín</au><au>Dračínský, Martin</au><au>Baszczyňski, Ondřej</au><au>Jersey, John de</au><au>Keough, Dianne T.</au><au>Guddat, Luke W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of 9-phosphonoalkyl and 9-phosphonoalkoxyalkyl purines: Evaluation of their ability to act as inhibitors of Plasmodium falciparum, Plasmodium vivax and human hypoxanthine–guanine–(xanthine) phosphoribosyltransferases</atitle><jtitle>Bioorganic & medicinal chemistry</jtitle><addtitle>Bioorg Med Chem</addtitle><date>2012-01-15</date><risdate>2012</risdate><volume>20</volume><issue>2</issue><spage>1076</spage><epage>1089</epage><pages>1076-1089</pages><issn>0968-0896</issn><eissn>1464-3391</eissn><abstract>The purine salvage enzyme, hypoxanthine–guanine–(xanthine) phosphoribosyltransferase [HG(X)PRT], catalyses the synthesis of the purine nucleoside monophosphates, IMP, GMP or XMP essential for DNA/RNA production. In protozoan parasites, such as Plasmodium, this is the only route available for their synthesis as they lack the de novo pathway which is present in human cells. Acyclic nucleoside phosphonates (ANPs), analogs of the purine nucleoside monophosphates, have been found to inhibit Plasmodium falciparum (Pf) HGXPRT and Plasmodium vivax (Pv) HGPRT with Ki values as low as 100nM. They arrest parasitemia in cell based assays with IC50 values of the order of 1–10μM. ANPs with phosphonoalkyl and phosphonoalkoxyalkyl moieties linking the purine base and phosphonate group were designed and synthesised to evaluate the influence of this linker on the potency and/or selectivity of the ANPs for the human and malarial enzymes. This data shows that variability in the linker, as well as the positioning of the oxygen in this linker, influences binding. The human enzyme binds the ANPs with Ki values of 0.5μM when the number of atoms in the linker was 5 or 6 atoms. However, the parasite enzymes have little affinity for such long chains unless oxygen is included in the three-position. In comparison, all three enzymes have little affinity for ANPs where the number of atoms linking the base and the phosphonate group is of the order of 2–3 atoms. The chemical nature of the purine base also effects the Ki values. This data shows that both the linker and the purine base play an important role in the binding of the ANPs to these three enzymes.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>22178188</pmid><doi>10.1016/j.bmc.2011.11.034</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0968-0896 |
ispartof | Bioorganic & medicinal chemistry, 2012-01, Vol.20 (2), p.1076-1089 |
issn | 0968-0896 1464-3391 |
language | eng |
recordid | cdi_proquest_miscellaneous_923194152 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Acyclic nucleoside phosphonates Antimalarials - chemical synthesis Antimalarials - chemistry Antimalarials - pharmacology chemistry DNA Enzyme Activation - drug effects enzymes Humans Hypoxanthine–guanine–xanthine inhibitory concentration 50 inosine monophosphate Kinetics Malaria nucleosides oxygen parasitemia parasites Pentosyltransferases - antagonists & inhibitors Pentosyltransferases - genetics Pentosyltransferases - metabolism phosphonates Phosphoribosyltransferase Plasmodium falciparum Plasmodium falciparum - drug effects Plasmodium falciparum - enzymology Plasmodium vivax Plasmodium vivax - drug effects Plasmodium vivax - enzymology Protozoan Proteins - antagonists & inhibitors Protozoan Proteins - genetics Protozoan Proteins - metabolism Purines - chemical synthesis Purines - chemistry Purines - pharmacology Recombinant Proteins - antagonists & inhibitors Recombinant Proteins - genetics Recombinant Proteins - metabolism RNA xanthine |
title | Synthesis of 9-phosphonoalkyl and 9-phosphonoalkoxyalkyl purines: Evaluation of their ability to act as inhibitors of Plasmodium falciparum, Plasmodium vivax and human hypoxanthine–guanine–(xanthine) phosphoribosyltransferases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%209-phosphonoalkyl%20and%209-phosphonoalkoxyalkyl%20purines:%20Evaluation%20of%20their%20ability%20to%20act%20as%20inhibitors%20of%20Plasmodium%20falciparum,%20Plasmodium%20vivax%20and%20human%20hypoxanthine%E2%80%93guanine%E2%80%93(xanthine)%20phosphoribosyltransferases&rft.jtitle=Bioorganic%20&%20medicinal%20chemistry&rft.au=%C4%8Cesnek,%20Michal&rft.date=2012-01-15&rft.volume=20&rft.issue=2&rft.spage=1076&rft.epage=1089&rft.pages=1076-1089&rft.issn=0968-0896&rft.eissn=1464-3391&rft_id=info:doi/10.1016/j.bmc.2011.11.034&rft_dat=%3Cproquest_cross%3E923194152%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=916527784&rft_id=info:pmid/22178188&rft_els_id=S0968089611009709&rfr_iscdi=true |