Adrenergic modulation of sharp wave-ripple activity in rat hippocampal slices

Norepinephrine (NE) has been shown to facilitate learning and memory by modulating synaptic plasticity in the hippocampus in vivo. During memory consolidation, transiently stored information is transferred from the hippocampus into the cortical mantle. This process is believed to depend on the gener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hippocampus 2012-03, Vol.22 (3), p.516-533
Hauptverfasser: Ul Haq, R., Liotta, A., Kovacs, R., Rösler, A., Jarosch, M.J., Heinemann, U., Behrens, C.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 533
container_issue 3
container_start_page 516
container_title Hippocampus
container_volume 22
creator Ul Haq, R.
Liotta, A.
Kovacs, R.
Rösler, A.
Jarosch, M.J.
Heinemann, U.
Behrens, C.J.
description Norepinephrine (NE) has been shown to facilitate learning and memory by modulating synaptic plasticity in the hippocampus in vivo. During memory consolidation, transiently stored information is transferred from the hippocampus into the cortical mantle. This process is believed to depend on the generation of sharp wave‐ripple complexes (SPW‐Rs), during which previously stored information might be replayed. Here, we used rat hippocampal slices to investigate neuromodulatory effects of NE on SPW‐Rs, induced by a standard long‐term potentiation (LTP) protocol, in the CA3 and CA1. NE (10–50 μM) dose‐dependently and reversibly suppressed the generation of SPW‐Rs via activation of α1 adrenoreceptors, as indicated by the similar effects of phenylephrine (100 μM). In contrast, the unspecific β adrenoreceptor agonist isoproterenol (2 μM) significantly increased the incidence of SPW‐Rs. Furthermore, β adrenoreceptor activation significantly facilitated induction of both LTP and SPW‐Rs within the CA3 network. Suppression of SPW‐Rs by NE was associated with a moderate hyperpolarization in the majority of CA3 pyramidal cells and with a reduction of presynaptic Ca2+ uptake in the stratum radiatum. This was indicated by activity‐dependent changes in [Ca2+]o and Ca2+fluorescence signals, by changes in the paired pulse ratio of evoked EPSPs and by analysis of the coefficient of variance. In the presence of NE, repeated high frequency stimulation (high‐frequency stimulation (HFS)) failed to induce SPW‐Rs, although SPW‐Rs appeared following washout of NE. Together, our data indicate that the NE‐mediated suppression of hippocampal SPW‐Rs depends on α1 adrenoreceptor activation, while their expression and activity‐dependent induction is facilitated via β1‐adrenoreceptors. © 2011 Wiley Periodicals, Inc.
doi_str_mv 10.1002/hipo.20918
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_923192140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>923192140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4328-627468bdcae69b493cc1076b86cb54d5975a79944a13b2ef019c0e993cf3f42a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EglJY-AHIGxJSyvkjTjxWFaWVCmUAgVgsx3HAkDTBTgv996QUGJnuhnfvpIfQCYEBAaAXL66pBxQkSXdQj4BMIwKC7W72GCIpGDlAhyG8AhASA-yjA0pozBmwHroe5t4urH92Bld1vix16-oFrgscXrRv8Ide2ci7pikt1qZ1K9eusVtgr1vc_W1qo6tGlziUzthwhPYKXQZ7_DP76H58eTeaRLP51XQ0nEWGM5pGgiZcpFlutBUy45IZQyARWSpMFvM8lkmsEyk514Rl1BZApAErO65gBaea9dHZ1tv4-n1pQ6sqF4wtS72w9TIoSRmRlHDoyPMtaXwdgreFaryrtF8rAmpTT23qqe96HXz6o11mlc3_0N9cHUC2wIcr7foflZpMb-e_0mh740JrP_9utH9TImFJrB5urpQcP_L46ZEqwb4ABvSJRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923192140</pqid></control><display><type>article</type><title>Adrenergic modulation of sharp wave-ripple activity in rat hippocampal slices</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ul Haq, R. ; Liotta, A. ; Kovacs, R. ; Rösler, A. ; Jarosch, M.J. ; Heinemann, U. ; Behrens, C.J.</creator><creatorcontrib>Ul Haq, R. ; Liotta, A. ; Kovacs, R. ; Rösler, A. ; Jarosch, M.J. ; Heinemann, U. ; Behrens, C.J.</creatorcontrib><description>Norepinephrine (NE) has been shown to facilitate learning and memory by modulating synaptic plasticity in the hippocampus in vivo. During memory consolidation, transiently stored information is transferred from the hippocampus into the cortical mantle. This process is believed to depend on the generation of sharp wave‐ripple complexes (SPW‐Rs), during which previously stored information might be replayed. Here, we used rat hippocampal slices to investigate neuromodulatory effects of NE on SPW‐Rs, induced by a standard long‐term potentiation (LTP) protocol, in the CA3 and CA1. NE (10–50 μM) dose‐dependently and reversibly suppressed the generation of SPW‐Rs via activation of α1 adrenoreceptors, as indicated by the similar effects of phenylephrine (100 μM). In contrast, the unspecific β adrenoreceptor agonist isoproterenol (2 μM) significantly increased the incidence of SPW‐Rs. Furthermore, β adrenoreceptor activation significantly facilitated induction of both LTP and SPW‐Rs within the CA3 network. Suppression of SPW‐Rs by NE was associated with a moderate hyperpolarization in the majority of CA3 pyramidal cells and with a reduction of presynaptic Ca2+ uptake in the stratum radiatum. This was indicated by activity‐dependent changes in [Ca2+]o and Ca2+fluorescence signals, by changes in the paired pulse ratio of evoked EPSPs and by analysis of the coefficient of variance. In the presence of NE, repeated high frequency stimulation (high‐frequency stimulation (HFS)) failed to induce SPW‐Rs, although SPW‐Rs appeared following washout of NE. Together, our data indicate that the NE‐mediated suppression of hippocampal SPW‐Rs depends on α1 adrenoreceptor activation, while their expression and activity‐dependent induction is facilitated via β1‐adrenoreceptors. © 2011 Wiley Periodicals, Inc.</description><identifier>ISSN: 1050-9631</identifier><identifier>EISSN: 1098-1063</identifier><identifier>DOI: 10.1002/hipo.20918</identifier><identifier>PMID: 21254303</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Adrenergic alpha-Agonists - pharmacology ; alpha1 adrenoreceptor ; Animals ; beta1 adrenoreceptor ; Calcium - metabolism ; calcium fluorescence ; Dose-Response Relationship, Drug ; Electric Stimulation ; Female ; Hippocampus - drug effects ; Hippocampus - physiology ; Long-Term Potentiation - drug effects ; Long-Term Potentiation - physiology ; LTP ; Nerve Net - drug effects ; Nerve Net - physiology ; norepinephrine ; Norepinephrine - pharmacology ; presynaptic ; Pyramidal Cells - drug effects ; Pyramidal Cells - physiology ; Rats ; Rats, Wistar ; Receptors, Adrenergic, alpha-1 - physiology</subject><ispartof>Hippocampus, 2012-03, Vol.22 (3), p.516-533</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4328-627468bdcae69b493cc1076b86cb54d5975a79944a13b2ef019c0e993cf3f42a3</citedby><cites>FETCH-LOGICAL-c4328-627468bdcae69b493cc1076b86cb54d5975a79944a13b2ef019c0e993cf3f42a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhipo.20918$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhipo.20918$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21254303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ul Haq, R.</creatorcontrib><creatorcontrib>Liotta, A.</creatorcontrib><creatorcontrib>Kovacs, R.</creatorcontrib><creatorcontrib>Rösler, A.</creatorcontrib><creatorcontrib>Jarosch, M.J.</creatorcontrib><creatorcontrib>Heinemann, U.</creatorcontrib><creatorcontrib>Behrens, C.J.</creatorcontrib><title>Adrenergic modulation of sharp wave-ripple activity in rat hippocampal slices</title><title>Hippocampus</title><addtitle>Hippocampus</addtitle><description>Norepinephrine (NE) has been shown to facilitate learning and memory by modulating synaptic plasticity in the hippocampus in vivo. During memory consolidation, transiently stored information is transferred from the hippocampus into the cortical mantle. This process is believed to depend on the generation of sharp wave‐ripple complexes (SPW‐Rs), during which previously stored information might be replayed. Here, we used rat hippocampal slices to investigate neuromodulatory effects of NE on SPW‐Rs, induced by a standard long‐term potentiation (LTP) protocol, in the CA3 and CA1. NE (10–50 μM) dose‐dependently and reversibly suppressed the generation of SPW‐Rs via activation of α1 adrenoreceptors, as indicated by the similar effects of phenylephrine (100 μM). In contrast, the unspecific β adrenoreceptor agonist isoproterenol (2 μM) significantly increased the incidence of SPW‐Rs. Furthermore, β adrenoreceptor activation significantly facilitated induction of both LTP and SPW‐Rs within the CA3 network. Suppression of SPW‐Rs by NE was associated with a moderate hyperpolarization in the majority of CA3 pyramidal cells and with a reduction of presynaptic Ca2+ uptake in the stratum radiatum. This was indicated by activity‐dependent changes in [Ca2+]o and Ca2+fluorescence signals, by changes in the paired pulse ratio of evoked EPSPs and by analysis of the coefficient of variance. In the presence of NE, repeated high frequency stimulation (high‐frequency stimulation (HFS)) failed to induce SPW‐Rs, although SPW‐Rs appeared following washout of NE. Together, our data indicate that the NE‐mediated suppression of hippocampal SPW‐Rs depends on α1 adrenoreceptor activation, while their expression and activity‐dependent induction is facilitated via β1‐adrenoreceptors. © 2011 Wiley Periodicals, Inc.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Adrenergic alpha-Agonists - pharmacology</subject><subject>alpha1 adrenoreceptor</subject><subject>Animals</subject><subject>beta1 adrenoreceptor</subject><subject>Calcium - metabolism</subject><subject>calcium fluorescence</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electric Stimulation</subject><subject>Female</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - physiology</subject><subject>Long-Term Potentiation - drug effects</subject><subject>Long-Term Potentiation - physiology</subject><subject>LTP</subject><subject>Nerve Net - drug effects</subject><subject>Nerve Net - physiology</subject><subject>norepinephrine</subject><subject>Norepinephrine - pharmacology</subject><subject>presynaptic</subject><subject>Pyramidal Cells - drug effects</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptors, Adrenergic, alpha-1 - physiology</subject><issn>1050-9631</issn><issn>1098-1063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQQC0EglJY-AHIGxJSyvkjTjxWFaWVCmUAgVgsx3HAkDTBTgv996QUGJnuhnfvpIfQCYEBAaAXL66pBxQkSXdQj4BMIwKC7W72GCIpGDlAhyG8AhASA-yjA0pozBmwHroe5t4urH92Bld1vix16-oFrgscXrRv8Ide2ci7pikt1qZ1K9eusVtgr1vc_W1qo6tGlziUzthwhPYKXQZ7_DP76H58eTeaRLP51XQ0nEWGM5pGgiZcpFlutBUy45IZQyARWSpMFvM8lkmsEyk514Rl1BZApAErO65gBaea9dHZ1tv4-n1pQ6sqF4wtS72w9TIoSRmRlHDoyPMtaXwdgreFaryrtF8rAmpTT23qqe96HXz6o11mlc3_0N9cHUC2wIcr7foflZpMb-e_0mh740JrP_9utH9TImFJrB5urpQcP_L46ZEqwb4ABvSJRw</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Ul Haq, R.</creator><creator>Liotta, A.</creator><creator>Kovacs, R.</creator><creator>Rösler, A.</creator><creator>Jarosch, M.J.</creator><creator>Heinemann, U.</creator><creator>Behrens, C.J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201203</creationdate><title>Adrenergic modulation of sharp wave-ripple activity in rat hippocampal slices</title><author>Ul Haq, R. ; Liotta, A. ; Kovacs, R. ; Rösler, A. ; Jarosch, M.J. ; Heinemann, U. ; Behrens, C.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4328-627468bdcae69b493cc1076b86cb54d5975a79944a13b2ef019c0e993cf3f42a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Adrenergic alpha-Agonists - pharmacology</topic><topic>alpha1 adrenoreceptor</topic><topic>Animals</topic><topic>beta1 adrenoreceptor</topic><topic>Calcium - metabolism</topic><topic>calcium fluorescence</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electric Stimulation</topic><topic>Female</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - physiology</topic><topic>Long-Term Potentiation - drug effects</topic><topic>Long-Term Potentiation - physiology</topic><topic>LTP</topic><topic>Nerve Net - drug effects</topic><topic>Nerve Net - physiology</topic><topic>norepinephrine</topic><topic>Norepinephrine - pharmacology</topic><topic>presynaptic</topic><topic>Pyramidal Cells - drug effects</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptors, Adrenergic, alpha-1 - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ul Haq, R.</creatorcontrib><creatorcontrib>Liotta, A.</creatorcontrib><creatorcontrib>Kovacs, R.</creatorcontrib><creatorcontrib>Rösler, A.</creatorcontrib><creatorcontrib>Jarosch, M.J.</creatorcontrib><creatorcontrib>Heinemann, U.</creatorcontrib><creatorcontrib>Behrens, C.J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Hippocampus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ul Haq, R.</au><au>Liotta, A.</au><au>Kovacs, R.</au><au>Rösler, A.</au><au>Jarosch, M.J.</au><au>Heinemann, U.</au><au>Behrens, C.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adrenergic modulation of sharp wave-ripple activity in rat hippocampal slices</atitle><jtitle>Hippocampus</jtitle><addtitle>Hippocampus</addtitle><date>2012-03</date><risdate>2012</risdate><volume>22</volume><issue>3</issue><spage>516</spage><epage>533</epage><pages>516-533</pages><issn>1050-9631</issn><eissn>1098-1063</eissn><abstract>Norepinephrine (NE) has been shown to facilitate learning and memory by modulating synaptic plasticity in the hippocampus in vivo. During memory consolidation, transiently stored information is transferred from the hippocampus into the cortical mantle. This process is believed to depend on the generation of sharp wave‐ripple complexes (SPW‐Rs), during which previously stored information might be replayed. Here, we used rat hippocampal slices to investigate neuromodulatory effects of NE on SPW‐Rs, induced by a standard long‐term potentiation (LTP) protocol, in the CA3 and CA1. NE (10–50 μM) dose‐dependently and reversibly suppressed the generation of SPW‐Rs via activation of α1 adrenoreceptors, as indicated by the similar effects of phenylephrine (100 μM). In contrast, the unspecific β adrenoreceptor agonist isoproterenol (2 μM) significantly increased the incidence of SPW‐Rs. Furthermore, β adrenoreceptor activation significantly facilitated induction of both LTP and SPW‐Rs within the CA3 network. Suppression of SPW‐Rs by NE was associated with a moderate hyperpolarization in the majority of CA3 pyramidal cells and with a reduction of presynaptic Ca2+ uptake in the stratum radiatum. This was indicated by activity‐dependent changes in [Ca2+]o and Ca2+fluorescence signals, by changes in the paired pulse ratio of evoked EPSPs and by analysis of the coefficient of variance. In the presence of NE, repeated high frequency stimulation (high‐frequency stimulation (HFS)) failed to induce SPW‐Rs, although SPW‐Rs appeared following washout of NE. Together, our data indicate that the NE‐mediated suppression of hippocampal SPW‐Rs depends on α1 adrenoreceptor activation, while their expression and activity‐dependent induction is facilitated via β1‐adrenoreceptors. © 2011 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21254303</pmid><doi>10.1002/hipo.20918</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1050-9631
ispartof Hippocampus, 2012-03, Vol.22 (3), p.516-533
issn 1050-9631
1098-1063
language eng
recordid cdi_proquest_miscellaneous_923192140
source MEDLINE; Access via Wiley Online Library
subjects Action Potentials - drug effects
Action Potentials - physiology
Adrenergic alpha-Agonists - pharmacology
alpha1 adrenoreceptor
Animals
beta1 adrenoreceptor
Calcium - metabolism
calcium fluorescence
Dose-Response Relationship, Drug
Electric Stimulation
Female
Hippocampus - drug effects
Hippocampus - physiology
Long-Term Potentiation - drug effects
Long-Term Potentiation - physiology
LTP
Nerve Net - drug effects
Nerve Net - physiology
norepinephrine
Norepinephrine - pharmacology
presynaptic
Pyramidal Cells - drug effects
Pyramidal Cells - physiology
Rats
Rats, Wistar
Receptors, Adrenergic, alpha-1 - physiology
title Adrenergic modulation of sharp wave-ripple activity in rat hippocampal slices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T06%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adrenergic%20modulation%20of%20sharp%20wave-ripple%20activity%20in%20rat%20hippocampal%20slices&rft.jtitle=Hippocampus&rft.au=Ul%20Haq,%20R.&rft.date=2012-03&rft.volume=22&rft.issue=3&rft.spage=516&rft.epage=533&rft.pages=516-533&rft.issn=1050-9631&rft.eissn=1098-1063&rft_id=info:doi/10.1002/hipo.20918&rft_dat=%3Cproquest_cross%3E923192140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923192140&rft_id=info:pmid/21254303&rfr_iscdi=true