The catalytic core of an archaeal 2‐oxoacid dehydrogenase multienzyme complex is a 42‐mer protein assembly
The dihydrolipoyl acyl‐transferase (E2) enzyme forms the structural and catalytic core of the tripartite 2‐oxoacid dehydrogenase multienzyme complexes of the central metabolic pathways. Although this family of multienzyme complexes shares a common architecture, their E2 cores form homo‐trimers that,...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2012-03, Vol.279 (5), p.713-723 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 723 |
---|---|
container_issue | 5 |
container_start_page | 713 |
container_title | The FEBS journal |
container_volume | 279 |
creator | Marrott, Nia L. Marshall, Jacqueline J. T. Svergun, Dmitri I. Crennell, Susan J. Hough, David W. Danson, Michael J. van den Elsen, Jean M. H. |
description | The dihydrolipoyl acyl‐transferase (E2) enzyme forms the structural and catalytic core of the tripartite 2‐oxoacid dehydrogenase multienzyme complexes of the central metabolic pathways. Although this family of multienzyme complexes shares a common architecture, their E2 cores form homo‐trimers that, depending on the source, further associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. In the crystal structure of the E2 core from Thermoplasma acidophilum, a thermophilic archaeon, the homo‐trimers assemble into a unique 42‐mer oblate spheroid. Analytical equilibrium centrifugation and small‐angle X‐ray scattering analyses confirm that this catalytically active 1.08 MDa assembly exists as a single species in solution, forming a hollow spheroid with a maximum diameter of 220 Å. In this paper we show that a monodisperse macromolecular assembly, built from identical subunits in non‐identical environments, forms an irregular protein shell via non‐equivalent interactions. This unusually irregular protein shell, combining cubic and dodecahedral geometrical elements, expands on the concept of quasi‐equivalence as a basis for understanding macromolecular assemblies by showing that cubic point group symmetry is not a physical requirement in multienzyme assembly. These results extend our basic knowledge of protein assembly and greatly expand the number of possibilities to manipulate self‐assembling biological complexes to be utilized in innovative nanotechnology applications.
Database
The final coordinates of the E2 structure have been deposited in the Protein Data Bank (PDB accession code 3RQC)
Structured digital
•
E2 and E2 bind by x‐ray crystallography (View interaction)
•
E2 and E2 bind by x ray scattering (View interaction)
The family of 2‐oxoacid dehydrogenase multienzyme complexes associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. Surprisingly, the E2 core from Thermoplasma acidophilum assembles into a unique 42‐mer oblate spheroid showing that a macromolecular assembly of identical subunits can form an irregular protein shell via non‐equivalent interactions. These results extend our basic knowledge of protein assembly. |
doi_str_mv | 10.1111/j.1742-4658.2011.08461.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_922757133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>922757133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4461-27363c05304e2bc71d86f13ecf5fad4ebc46b1f1552f3ef7c37165e3b215d0e73</originalsourceid><addsrcrecordid>eNqNkc9u1DAQxi0EoqXwCsjiwmmDx3-S7AUJqrYgVeJAkbhZjjNms3LixU7UDScegWfsk9Rhyx44dS4zkn_fp_F8hFBgBeR6ty2gknwlS1UXnAEUrJYlFPsn5PT48PQ4y-8n5EVKW8aEkuv1c3LCOdR1qeQpGW42SK0ZjZ_HzlIbItLgqBmoiXZj0HjK737_CftgbNfSFjdzG8MPHExC2k9-7HD4NffZI_Q7j3vaJWqoXDQ9RrqLYcQum6WEfePnl-SZMz7hq4d-Rr5dXtycf1pdf7n6fP7hemVl_siKV6IUlinBJPLGVtDWpQOB1ilnWomNlWUDDpTiTqCrrKigVCgaDqplWIkz8vbgmxf4OWEadd8li96bAcOU9JrzSlUgRCbf_EduwxSHvNwCiTUHkBmqD5CNIaWITu9i15s4a2B6SURv9XJsvRxeL4nov4nofZa-fvCfmh7bo_BfBBl4fwBuO4_zo4315cXHr8so7gFC0Jwu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922392114</pqid></control><display><type>article</type><title>The catalytic core of an archaeal 2‐oxoacid dehydrogenase multienzyme complex is a 42‐mer protein assembly</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Marrott, Nia L. ; Marshall, Jacqueline J. T. ; Svergun, Dmitri I. ; Crennell, Susan J. ; Hough, David W. ; Danson, Michael J. ; van den Elsen, Jean M. H.</creator><creatorcontrib>Marrott, Nia L. ; Marshall, Jacqueline J. T. ; Svergun, Dmitri I. ; Crennell, Susan J. ; Hough, David W. ; Danson, Michael J. ; van den Elsen, Jean M. H.</creatorcontrib><description>The dihydrolipoyl acyl‐transferase (E2) enzyme forms the structural and catalytic core of the tripartite 2‐oxoacid dehydrogenase multienzyme complexes of the central metabolic pathways. Although this family of multienzyme complexes shares a common architecture, their E2 cores form homo‐trimers that, depending on the source, further associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. In the crystal structure of the E2 core from Thermoplasma acidophilum, a thermophilic archaeon, the homo‐trimers assemble into a unique 42‐mer oblate spheroid. Analytical equilibrium centrifugation and small‐angle X‐ray scattering analyses confirm that this catalytically active 1.08 MDa assembly exists as a single species in solution, forming a hollow spheroid with a maximum diameter of 220 Å. In this paper we show that a monodisperse macromolecular assembly, built from identical subunits in non‐identical environments, forms an irregular protein shell via non‐equivalent interactions. This unusually irregular protein shell, combining cubic and dodecahedral geometrical elements, expands on the concept of quasi‐equivalence as a basis for understanding macromolecular assemblies by showing that cubic point group symmetry is not a physical requirement in multienzyme assembly. These results extend our basic knowledge of protein assembly and greatly expand the number of possibilities to manipulate self‐assembling biological complexes to be utilized in innovative nanotechnology applications.
Database
The final coordinates of the E2 structure have been deposited in the Protein Data Bank (PDB accession code 3RQC)
Structured digital
•
E2 and E2 bind by x‐ray crystallography (View interaction)
•
E2 and E2 bind by x ray scattering (View interaction)
The family of 2‐oxoacid dehydrogenase multienzyme complexes associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. Surprisingly, the E2 core from Thermoplasma acidophilum assembles into a unique 42‐mer oblate spheroid showing that a macromolecular assembly of identical subunits can form an irregular protein shell via non‐equivalent interactions. These results extend our basic knowledge of protein assembly.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/j.1742-4658.2011.08461.x</identifier><identifier>PMID: 22188654</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>archaea ; Archaeal Proteins - chemistry ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Enzymes ; macromolecular assembly ; Models, Molecular ; Molecular biology ; multienzyme complex ; Multienzyme Complexes - chemistry ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Protein Conformation ; Proteins ; thermophile ; Thermoplasma - enzymology ; X‐ray crystallography</subject><ispartof>The FEBS journal, 2012-03, Vol.279 (5), p.713-723</ispartof><rights>2011 The Authors Journal compilation © 2011 FEBS</rights><rights>2011 The Authors Journal compilation © 2011 FEBS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4461-27363c05304e2bc71d86f13ecf5fad4ebc46b1f1552f3ef7c37165e3b215d0e73</citedby><cites>FETCH-LOGICAL-c4461-27363c05304e2bc71d86f13ecf5fad4ebc46b1f1552f3ef7c37165e3b215d0e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1742-4658.2011.08461.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1742-4658.2011.08461.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22188654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marrott, Nia L.</creatorcontrib><creatorcontrib>Marshall, Jacqueline J. T.</creatorcontrib><creatorcontrib>Svergun, Dmitri I.</creatorcontrib><creatorcontrib>Crennell, Susan J.</creatorcontrib><creatorcontrib>Hough, David W.</creatorcontrib><creatorcontrib>Danson, Michael J.</creatorcontrib><creatorcontrib>van den Elsen, Jean M. H.</creatorcontrib><title>The catalytic core of an archaeal 2‐oxoacid dehydrogenase multienzyme complex is a 42‐mer protein assembly</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>The dihydrolipoyl acyl‐transferase (E2) enzyme forms the structural and catalytic core of the tripartite 2‐oxoacid dehydrogenase multienzyme complexes of the central metabolic pathways. Although this family of multienzyme complexes shares a common architecture, their E2 cores form homo‐trimers that, depending on the source, further associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. In the crystal structure of the E2 core from Thermoplasma acidophilum, a thermophilic archaeon, the homo‐trimers assemble into a unique 42‐mer oblate spheroid. Analytical equilibrium centrifugation and small‐angle X‐ray scattering analyses confirm that this catalytically active 1.08 MDa assembly exists as a single species in solution, forming a hollow spheroid with a maximum diameter of 220 Å. In this paper we show that a monodisperse macromolecular assembly, built from identical subunits in non‐identical environments, forms an irregular protein shell via non‐equivalent interactions. This unusually irregular protein shell, combining cubic and dodecahedral geometrical elements, expands on the concept of quasi‐equivalence as a basis for understanding macromolecular assemblies by showing that cubic point group symmetry is not a physical requirement in multienzyme assembly. These results extend our basic knowledge of protein assembly and greatly expand the number of possibilities to manipulate self‐assembling biological complexes to be utilized in innovative nanotechnology applications.
Database
The final coordinates of the E2 structure have been deposited in the Protein Data Bank (PDB accession code 3RQC)
Structured digital
•
E2 and E2 bind by x‐ray crystallography (View interaction)
•
E2 and E2 bind by x ray scattering (View interaction)
The family of 2‐oxoacid dehydrogenase multienzyme complexes associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. Surprisingly, the E2 core from Thermoplasma acidophilum assembles into a unique 42‐mer oblate spheroid showing that a macromolecular assembly of identical subunits can form an irregular protein shell via non‐equivalent interactions. These results extend our basic knowledge of protein assembly.</description><subject>archaea</subject><subject>Archaeal Proteins - chemistry</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>Enzymes</subject><subject>macromolecular assembly</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>multienzyme complex</subject><subject>Multienzyme Complexes - chemistry</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>thermophile</subject><subject>Thermoplasma - enzymology</subject><subject>X‐ray crystallography</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9u1DAQxi0EoqXwCsjiwmmDx3-S7AUJqrYgVeJAkbhZjjNms3LixU7UDScegWfsk9Rhyx44dS4zkn_fp_F8hFBgBeR6ty2gknwlS1UXnAEUrJYlFPsn5PT48PQ4y-8n5EVKW8aEkuv1c3LCOdR1qeQpGW42SK0ZjZ_HzlIbItLgqBmoiXZj0HjK737_CftgbNfSFjdzG8MPHExC2k9-7HD4NffZI_Q7j3vaJWqoXDQ9RrqLYcQum6WEfePnl-SZMz7hq4d-Rr5dXtycf1pdf7n6fP7hemVl_siKV6IUlinBJPLGVtDWpQOB1ilnWomNlWUDDpTiTqCrrKigVCgaDqplWIkz8vbgmxf4OWEadd8li96bAcOU9JrzSlUgRCbf_EduwxSHvNwCiTUHkBmqD5CNIaWITu9i15s4a2B6SURv9XJsvRxeL4nov4nofZa-fvCfmh7bo_BfBBl4fwBuO4_zo4315cXHr8so7gFC0Jwu</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Marrott, Nia L.</creator><creator>Marshall, Jacqueline J. T.</creator><creator>Svergun, Dmitri I.</creator><creator>Crennell, Susan J.</creator><creator>Hough, David W.</creator><creator>Danson, Michael J.</creator><creator>van den Elsen, Jean M. H.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201203</creationdate><title>The catalytic core of an archaeal 2‐oxoacid dehydrogenase multienzyme complex is a 42‐mer protein assembly</title><author>Marrott, Nia L. ; Marshall, Jacqueline J. T. ; Svergun, Dmitri I. ; Crennell, Susan J. ; Hough, David W. ; Danson, Michael J. ; van den Elsen, Jean M. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4461-27363c05304e2bc71d86f13ecf5fad4ebc46b1f1552f3ef7c37165e3b215d0e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>archaea</topic><topic>Archaeal Proteins - chemistry</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>Enzymes</topic><topic>macromolecular assembly</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>multienzyme complex</topic><topic>Multienzyme Complexes - chemistry</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>thermophile</topic><topic>Thermoplasma - enzymology</topic><topic>X‐ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marrott, Nia L.</creatorcontrib><creatorcontrib>Marshall, Jacqueline J. T.</creatorcontrib><creatorcontrib>Svergun, Dmitri I.</creatorcontrib><creatorcontrib>Crennell, Susan J.</creatorcontrib><creatorcontrib>Hough, David W.</creatorcontrib><creatorcontrib>Danson, Michael J.</creatorcontrib><creatorcontrib>van den Elsen, Jean M. H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marrott, Nia L.</au><au>Marshall, Jacqueline J. T.</au><au>Svergun, Dmitri I.</au><au>Crennell, Susan J.</au><au>Hough, David W.</au><au>Danson, Michael J.</au><au>van den Elsen, Jean M. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The catalytic core of an archaeal 2‐oxoacid dehydrogenase multienzyme complex is a 42‐mer protein assembly</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2012-03</date><risdate>2012</risdate><volume>279</volume><issue>5</issue><spage>713</spage><epage>723</epage><pages>713-723</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>The dihydrolipoyl acyl‐transferase (E2) enzyme forms the structural and catalytic core of the tripartite 2‐oxoacid dehydrogenase multienzyme complexes of the central metabolic pathways. Although this family of multienzyme complexes shares a common architecture, their E2 cores form homo‐trimers that, depending on the source, further associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. In the crystal structure of the E2 core from Thermoplasma acidophilum, a thermophilic archaeon, the homo‐trimers assemble into a unique 42‐mer oblate spheroid. Analytical equilibrium centrifugation and small‐angle X‐ray scattering analyses confirm that this catalytically active 1.08 MDa assembly exists as a single species in solution, forming a hollow spheroid with a maximum diameter of 220 Å. In this paper we show that a monodisperse macromolecular assembly, built from identical subunits in non‐identical environments, forms an irregular protein shell via non‐equivalent interactions. This unusually irregular protein shell, combining cubic and dodecahedral geometrical elements, expands on the concept of quasi‐equivalence as a basis for understanding macromolecular assemblies by showing that cubic point group symmetry is not a physical requirement in multienzyme assembly. These results extend our basic knowledge of protein assembly and greatly expand the number of possibilities to manipulate self‐assembling biological complexes to be utilized in innovative nanotechnology applications.
Database
The final coordinates of the E2 structure have been deposited in the Protein Data Bank (PDB accession code 3RQC)
Structured digital
•
E2 and E2 bind by x‐ray crystallography (View interaction)
•
E2 and E2 bind by x ray scattering (View interaction)
The family of 2‐oxoacid dehydrogenase multienzyme complexes associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. Surprisingly, the E2 core from Thermoplasma acidophilum assembles into a unique 42‐mer oblate spheroid showing that a macromolecular assembly of identical subunits can form an irregular protein shell via non‐equivalent interactions. These results extend our basic knowledge of protein assembly.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22188654</pmid><doi>10.1111/j.1742-4658.2011.08461.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-464X |
ispartof | The FEBS journal, 2012-03, Vol.279 (5), p.713-723 |
issn | 1742-464X 1742-4658 |
language | eng |
recordid | cdi_proquest_miscellaneous_922757133 |
source | MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; Free Full-Text Journals in Chemistry |
subjects | archaea Archaeal Proteins - chemistry Archaeal Proteins - genetics Archaeal Proteins - metabolism Binding Sites Catalytic Domain Crystallography, X-Ray Enzymes macromolecular assembly Models, Molecular Molecular biology multienzyme complex Multienzyme Complexes - chemistry Multienzyme Complexes - genetics Multienzyme Complexes - metabolism Protein Conformation Proteins thermophile Thermoplasma - enzymology X‐ray crystallography |
title | The catalytic core of an archaeal 2‐oxoacid dehydrogenase multienzyme complex is a 42‐mer protein assembly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20catalytic%20core%20of%20an%20archaeal%202%E2%80%90oxoacid%20dehydrogenase%20multienzyme%20complex%20is%20a%2042%E2%80%90mer%20protein%20assembly&rft.jtitle=The%20FEBS%20journal&rft.au=Marrott,%20Nia%20L.&rft.date=2012-03&rft.volume=279&rft.issue=5&rft.spage=713&rft.epage=723&rft.pages=713-723&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/j.1742-4658.2011.08461.x&rft_dat=%3Cproquest_cross%3E922757133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922392114&rft_id=info:pmid/22188654&rfr_iscdi=true |