The catalytic core of an archaeal 2‐oxoacid dehydrogenase multienzyme complex is a 42‐mer protein assembly

The dihydrolipoyl acyl‐transferase (E2) enzyme forms the structural and catalytic core of the tripartite 2‐oxoacid dehydrogenase multienzyme complexes of the central metabolic pathways. Although this family of multienzyme complexes shares a common architecture, their E2 cores form homo‐trimers that,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2012-03, Vol.279 (5), p.713-723
Hauptverfasser: Marrott, Nia L., Marshall, Jacqueline J. T., Svergun, Dmitri I., Crennell, Susan J., Hough, David W., Danson, Michael J., van den Elsen, Jean M. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 723
container_issue 5
container_start_page 713
container_title The FEBS journal
container_volume 279
creator Marrott, Nia L.
Marshall, Jacqueline J. T.
Svergun, Dmitri I.
Crennell, Susan J.
Hough, David W.
Danson, Michael J.
van den Elsen, Jean M. H.
description The dihydrolipoyl acyl‐transferase (E2) enzyme forms the structural and catalytic core of the tripartite 2‐oxoacid dehydrogenase multienzyme complexes of the central metabolic pathways. Although this family of multienzyme complexes shares a common architecture, their E2 cores form homo‐trimers that, depending on the source, further associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. In the crystal structure of the E2 core from Thermoplasma acidophilum, a thermophilic archaeon, the homo‐trimers assemble into a unique 42‐mer oblate spheroid. Analytical equilibrium centrifugation and small‐angle X‐ray scattering analyses confirm that this catalytically active 1.08 MDa assembly exists as a single species in solution, forming a hollow spheroid with a maximum diameter of 220 Å. In this paper we show that a monodisperse macromolecular assembly, built from identical subunits in non‐identical environments, forms an irregular protein shell via non‐equivalent interactions. This unusually irregular protein shell, combining cubic and dodecahedral geometrical elements, expands on the concept of quasi‐equivalence as a basis for understanding macromolecular assemblies by showing that cubic point group symmetry is not a physical requirement in multienzyme assembly. These results extend our basic knowledge of protein assembly and greatly expand the number of possibilities to manipulate self‐assembling biological complexes to be utilized in innovative nanotechnology applications. Database The final coordinates of the E2 structure have been deposited in the Protein Data Bank (PDB accession code 3RQC) Structured digital •  E2 and E2 bind by x‐ray crystallography (View interaction) •  E2 and E2 bind by x ray scattering (View interaction) The family of 2‐oxoacid dehydrogenase multienzyme complexes associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. Surprisingly, the E2 core from Thermoplasma acidophilum assembles into a unique 42‐mer oblate spheroid showing that a macromolecular assembly of identical subunits can form an irregular protein shell via non‐equivalent interactions. These results extend our basic knowledge of protein assembly.
doi_str_mv 10.1111/j.1742-4658.2011.08461.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_922757133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>922757133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4461-27363c05304e2bc71d86f13ecf5fad4ebc46b1f1552f3ef7c37165e3b215d0e73</originalsourceid><addsrcrecordid>eNqNkc9u1DAQxi0EoqXwCsjiwmmDx3-S7AUJqrYgVeJAkbhZjjNms3LixU7UDScegWfsk9Rhyx44dS4zkn_fp_F8hFBgBeR6ty2gknwlS1UXnAEUrJYlFPsn5PT48PQ4y-8n5EVKW8aEkuv1c3LCOdR1qeQpGW42SK0ZjZ_HzlIbItLgqBmoiXZj0HjK737_CftgbNfSFjdzG8MPHExC2k9-7HD4NffZI_Q7j3vaJWqoXDQ9RrqLYcQum6WEfePnl-SZMz7hq4d-Rr5dXtycf1pdf7n6fP7hemVl_siKV6IUlinBJPLGVtDWpQOB1ilnWomNlWUDDpTiTqCrrKigVCgaDqplWIkz8vbgmxf4OWEadd8li96bAcOU9JrzSlUgRCbf_EduwxSHvNwCiTUHkBmqD5CNIaWITu9i15s4a2B6SURv9XJsvRxeL4nov4nofZa-fvCfmh7bo_BfBBl4fwBuO4_zo4315cXHr8so7gFC0Jwu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922392114</pqid></control><display><type>article</type><title>The catalytic core of an archaeal 2‐oxoacid dehydrogenase multienzyme complex is a 42‐mer protein assembly</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Marrott, Nia L. ; Marshall, Jacqueline J. T. ; Svergun, Dmitri I. ; Crennell, Susan J. ; Hough, David W. ; Danson, Michael J. ; van den Elsen, Jean M. H.</creator><creatorcontrib>Marrott, Nia L. ; Marshall, Jacqueline J. T. ; Svergun, Dmitri I. ; Crennell, Susan J. ; Hough, David W. ; Danson, Michael J. ; van den Elsen, Jean M. H.</creatorcontrib><description>The dihydrolipoyl acyl‐transferase (E2) enzyme forms the structural and catalytic core of the tripartite 2‐oxoacid dehydrogenase multienzyme complexes of the central metabolic pathways. Although this family of multienzyme complexes shares a common architecture, their E2 cores form homo‐trimers that, depending on the source, further associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. In the crystal structure of the E2 core from Thermoplasma acidophilum, a thermophilic archaeon, the homo‐trimers assemble into a unique 42‐mer oblate spheroid. Analytical equilibrium centrifugation and small‐angle X‐ray scattering analyses confirm that this catalytically active 1.08 MDa assembly exists as a single species in solution, forming a hollow spheroid with a maximum diameter of 220 Å. In this paper we show that a monodisperse macromolecular assembly, built from identical subunits in non‐identical environments, forms an irregular protein shell via non‐equivalent interactions. This unusually irregular protein shell, combining cubic and dodecahedral geometrical elements, expands on the concept of quasi‐equivalence as a basis for understanding macromolecular assemblies by showing that cubic point group symmetry is not a physical requirement in multienzyme assembly. These results extend our basic knowledge of protein assembly and greatly expand the number of possibilities to manipulate self‐assembling biological complexes to be utilized in innovative nanotechnology applications. Database The final coordinates of the E2 structure have been deposited in the Protein Data Bank (PDB accession code 3RQC) Structured digital •  E2 and E2 bind by x‐ray crystallography (View interaction) •  E2 and E2 bind by x ray scattering (View interaction) The family of 2‐oxoacid dehydrogenase multienzyme complexes associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. Surprisingly, the E2 core from Thermoplasma acidophilum assembles into a unique 42‐mer oblate spheroid showing that a macromolecular assembly of identical subunits can form an irregular protein shell via non‐equivalent interactions. These results extend our basic knowledge of protein assembly.</description><identifier>ISSN: 1742-464X</identifier><identifier>EISSN: 1742-4658</identifier><identifier>DOI: 10.1111/j.1742-4658.2011.08461.x</identifier><identifier>PMID: 22188654</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>archaea ; Archaeal Proteins - chemistry ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Enzymes ; macromolecular assembly ; Models, Molecular ; Molecular biology ; multienzyme complex ; Multienzyme Complexes - chemistry ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Protein Conformation ; Proteins ; thermophile ; Thermoplasma - enzymology ; X‐ray crystallography</subject><ispartof>The FEBS journal, 2012-03, Vol.279 (5), p.713-723</ispartof><rights>2011 The Authors Journal compilation © 2011 FEBS</rights><rights>2011 The Authors Journal compilation © 2011 FEBS.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4461-27363c05304e2bc71d86f13ecf5fad4ebc46b1f1552f3ef7c37165e3b215d0e73</citedby><cites>FETCH-LOGICAL-c4461-27363c05304e2bc71d86f13ecf5fad4ebc46b1f1552f3ef7c37165e3b215d0e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1742-4658.2011.08461.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1742-4658.2011.08461.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22188654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marrott, Nia L.</creatorcontrib><creatorcontrib>Marshall, Jacqueline J. T.</creatorcontrib><creatorcontrib>Svergun, Dmitri I.</creatorcontrib><creatorcontrib>Crennell, Susan J.</creatorcontrib><creatorcontrib>Hough, David W.</creatorcontrib><creatorcontrib>Danson, Michael J.</creatorcontrib><creatorcontrib>van den Elsen, Jean M. H.</creatorcontrib><title>The catalytic core of an archaeal 2‐oxoacid dehydrogenase multienzyme complex is a 42‐mer protein assembly</title><title>The FEBS journal</title><addtitle>FEBS J</addtitle><description>The dihydrolipoyl acyl‐transferase (E2) enzyme forms the structural and catalytic core of the tripartite 2‐oxoacid dehydrogenase multienzyme complexes of the central metabolic pathways. Although this family of multienzyme complexes shares a common architecture, their E2 cores form homo‐trimers that, depending on the source, further associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. In the crystal structure of the E2 core from Thermoplasma acidophilum, a thermophilic archaeon, the homo‐trimers assemble into a unique 42‐mer oblate spheroid. Analytical equilibrium centrifugation and small‐angle X‐ray scattering analyses confirm that this catalytically active 1.08 MDa assembly exists as a single species in solution, forming a hollow spheroid with a maximum diameter of 220 Å. In this paper we show that a monodisperse macromolecular assembly, built from identical subunits in non‐identical environments, forms an irregular protein shell via non‐equivalent interactions. This unusually irregular protein shell, combining cubic and dodecahedral geometrical elements, expands on the concept of quasi‐equivalence as a basis for understanding macromolecular assemblies by showing that cubic point group symmetry is not a physical requirement in multienzyme assembly. These results extend our basic knowledge of protein assembly and greatly expand the number of possibilities to manipulate self‐assembling biological complexes to be utilized in innovative nanotechnology applications. Database The final coordinates of the E2 structure have been deposited in the Protein Data Bank (PDB accession code 3RQC) Structured digital •  E2 and E2 bind by x‐ray crystallography (View interaction) •  E2 and E2 bind by x ray scattering (View interaction) The family of 2‐oxoacid dehydrogenase multienzyme complexes associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. Surprisingly, the E2 core from Thermoplasma acidophilum assembles into a unique 42‐mer oblate spheroid showing that a macromolecular assembly of identical subunits can form an irregular protein shell via non‐equivalent interactions. These results extend our basic knowledge of protein assembly.</description><subject>archaea</subject><subject>Archaeal Proteins - chemistry</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>Enzymes</subject><subject>macromolecular assembly</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>multienzyme complex</subject><subject>Multienzyme Complexes - chemistry</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>thermophile</subject><subject>Thermoplasma - enzymology</subject><subject>X‐ray crystallography</subject><issn>1742-464X</issn><issn>1742-4658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9u1DAQxi0EoqXwCsjiwmmDx3-S7AUJqrYgVeJAkbhZjjNms3LixU7UDScegWfsk9Rhyx44dS4zkn_fp_F8hFBgBeR6ty2gknwlS1UXnAEUrJYlFPsn5PT48PQ4y-8n5EVKW8aEkuv1c3LCOdR1qeQpGW42SK0ZjZ_HzlIbItLgqBmoiXZj0HjK737_CftgbNfSFjdzG8MPHExC2k9-7HD4NffZI_Q7j3vaJWqoXDQ9RrqLYcQum6WEfePnl-SZMz7hq4d-Rr5dXtycf1pdf7n6fP7hemVl_siKV6IUlinBJPLGVtDWpQOB1ilnWomNlWUDDpTiTqCrrKigVCgaDqplWIkz8vbgmxf4OWEadd8li96bAcOU9JrzSlUgRCbf_EduwxSHvNwCiTUHkBmqD5CNIaWITu9i15s4a2B6SURv9XJsvRxeL4nov4nofZa-fvCfmh7bo_BfBBl4fwBuO4_zo4315cXHr8so7gFC0Jwu</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Marrott, Nia L.</creator><creator>Marshall, Jacqueline J. T.</creator><creator>Svergun, Dmitri I.</creator><creator>Crennell, Susan J.</creator><creator>Hough, David W.</creator><creator>Danson, Michael J.</creator><creator>van den Elsen, Jean M. H.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201203</creationdate><title>The catalytic core of an archaeal 2‐oxoacid dehydrogenase multienzyme complex is a 42‐mer protein assembly</title><author>Marrott, Nia L. ; Marshall, Jacqueline J. T. ; Svergun, Dmitri I. ; Crennell, Susan J. ; Hough, David W. ; Danson, Michael J. ; van den Elsen, Jean M. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4461-27363c05304e2bc71d86f13ecf5fad4ebc46b1f1552f3ef7c37165e3b215d0e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>archaea</topic><topic>Archaeal Proteins - chemistry</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>Enzymes</topic><topic>macromolecular assembly</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>multienzyme complex</topic><topic>Multienzyme Complexes - chemistry</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>thermophile</topic><topic>Thermoplasma - enzymology</topic><topic>X‐ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marrott, Nia L.</creatorcontrib><creatorcontrib>Marshall, Jacqueline J. T.</creatorcontrib><creatorcontrib>Svergun, Dmitri I.</creatorcontrib><creatorcontrib>Crennell, Susan J.</creatorcontrib><creatorcontrib>Hough, David W.</creatorcontrib><creatorcontrib>Danson, Michael J.</creatorcontrib><creatorcontrib>van den Elsen, Jean M. H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The FEBS journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marrott, Nia L.</au><au>Marshall, Jacqueline J. T.</au><au>Svergun, Dmitri I.</au><au>Crennell, Susan J.</au><au>Hough, David W.</au><au>Danson, Michael J.</au><au>van den Elsen, Jean M. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The catalytic core of an archaeal 2‐oxoacid dehydrogenase multienzyme complex is a 42‐mer protein assembly</atitle><jtitle>The FEBS journal</jtitle><addtitle>FEBS J</addtitle><date>2012-03</date><risdate>2012</risdate><volume>279</volume><issue>5</issue><spage>713</spage><epage>723</epage><pages>713-723</pages><issn>1742-464X</issn><eissn>1742-4658</eissn><abstract>The dihydrolipoyl acyl‐transferase (E2) enzyme forms the structural and catalytic core of the tripartite 2‐oxoacid dehydrogenase multienzyme complexes of the central metabolic pathways. Although this family of multienzyme complexes shares a common architecture, their E2 cores form homo‐trimers that, depending on the source, further associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. In the crystal structure of the E2 core from Thermoplasma acidophilum, a thermophilic archaeon, the homo‐trimers assemble into a unique 42‐mer oblate spheroid. Analytical equilibrium centrifugation and small‐angle X‐ray scattering analyses confirm that this catalytically active 1.08 MDa assembly exists as a single species in solution, forming a hollow spheroid with a maximum diameter of 220 Å. In this paper we show that a monodisperse macromolecular assembly, built from identical subunits in non‐identical environments, forms an irregular protein shell via non‐equivalent interactions. This unusually irregular protein shell, combining cubic and dodecahedral geometrical elements, expands on the concept of quasi‐equivalence as a basis for understanding macromolecular assemblies by showing that cubic point group symmetry is not a physical requirement in multienzyme assembly. These results extend our basic knowledge of protein assembly and greatly expand the number of possibilities to manipulate self‐assembling biological complexes to be utilized in innovative nanotechnology applications. Database The final coordinates of the E2 structure have been deposited in the Protein Data Bank (PDB accession code 3RQC) Structured digital •  E2 and E2 bind by x‐ray crystallography (View interaction) •  E2 and E2 bind by x ray scattering (View interaction) The family of 2‐oxoacid dehydrogenase multienzyme complexes associate into either octahedral (24‐mer) or icosahedral (60‐mer) assemblies, as predicted by the principles of quasi‐equivalence. Surprisingly, the E2 core from Thermoplasma acidophilum assembles into a unique 42‐mer oblate spheroid showing that a macromolecular assembly of identical subunits can form an irregular protein shell via non‐equivalent interactions. These results extend our basic knowledge of protein assembly.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22188654</pmid><doi>10.1111/j.1742-4658.2011.08461.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-464X
ispartof The FEBS journal, 2012-03, Vol.279 (5), p.713-723
issn 1742-464X
1742-4658
language eng
recordid cdi_proquest_miscellaneous_922757133
source MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; Free Full-Text Journals in Chemistry
subjects archaea
Archaeal Proteins - chemistry
Archaeal Proteins - genetics
Archaeal Proteins - metabolism
Binding Sites
Catalytic Domain
Crystallography, X-Ray
Enzymes
macromolecular assembly
Models, Molecular
Molecular biology
multienzyme complex
Multienzyme Complexes - chemistry
Multienzyme Complexes - genetics
Multienzyme Complexes - metabolism
Protein Conformation
Proteins
thermophile
Thermoplasma - enzymology
X‐ray crystallography
title The catalytic core of an archaeal 2‐oxoacid dehydrogenase multienzyme complex is a 42‐mer protein assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20catalytic%20core%20of%20an%20archaeal%202%E2%80%90oxoacid%20dehydrogenase%20multienzyme%20complex%20is%20a%2042%E2%80%90mer%20protein%20assembly&rft.jtitle=The%20FEBS%20journal&rft.au=Marrott,%20Nia%20L.&rft.date=2012-03&rft.volume=279&rft.issue=5&rft.spage=713&rft.epage=723&rft.pages=713-723&rft.issn=1742-464X&rft.eissn=1742-4658&rft_id=info:doi/10.1111/j.1742-4658.2011.08461.x&rft_dat=%3Cproquest_cross%3E922757133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922392114&rft_id=info:pmid/22188654&rfr_iscdi=true