Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress

Laminar shear stress (LSS) is a protective hemodynamic regulator of endothelial function and limits the development of atherosclerosis and other vascular wall diseases related to pathophysiological generation of reactive oxygen species. LSS activates several endothelial signaling responses, includin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2012-03, Vol.52 (6), p.1093-1100
Hauptverfasser: Bretón-Romero, Rosa, González de Orduña, Cecilia, Romero, Natalia, Sánchez-Gómez, Francisco J., de Álvaro, Cristina, Porras, Almudena, Rodríguez-Pascual, Fernando, Laranjinha, Joao, Radi, Rafael, Lamas, Santiago
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1100
container_issue 6
container_start_page 1093
container_title Free radical biology & medicine
container_volume 52
creator Bretón-Romero, Rosa
González de Orduña, Cecilia
Romero, Natalia
Sánchez-Gómez, Francisco J.
de Álvaro, Cristina
Porras, Almudena
Rodríguez-Pascual, Fernando
Laranjinha, Joao
Radi, Rafael
Lamas, Santiago
description Laminar shear stress (LSS) is a protective hemodynamic regulator of endothelial function and limits the development of atherosclerosis and other vascular wall diseases related to pathophysiological generation of reactive oxygen species. LSS activates several endothelial signaling responses, including the activation of MAPKs and eNOS. Here, we explored the mechanisms of activation of these key endothelial signaling pathways. Using the cone/plate model we found that LSS (12dyn/cm2) rapidly promotes endothelial intracellular generation of superoxide and hydrogen peroxide (H2O2). Physiological concentrations of H2O2 (flux of 0.1nM/min and 15μM added extracellularly) significantly activated both eNOS and p38 MAPK. Pharmacological inhibition of NADPH oxidases (NOXs) and specific knockdown of NOX4 decreased LSS-induced p38 MAPK activation. Whereas the absence of eNOS did not alter LSS-induced p38 MAPK activation, pharmacological inhibition and knockdown of p38α MAPK blocked H2O2- and LSS-induced eNOS phosphorylation and reduced •NO levels. We propose a model in which LSS promotes the formation of signaling levels of H2O2, which in turn activate p38α MAPK and then stimulate eNOS, leading to increased •NO generation and protection of endothelial function. [Display omitted] ► Laminar shear stress (LSS) generates signaling levels of ROS in endothelial cells. ► Low levels of hydrogen peroxide activate p38 MAPK and eNOS. ► LSS-dependent activation of p38 MAPK is upstream of eNOS activation and NO synthesis. ► LSS-dependent activation of p38 MAPK requires peroxide generation by NOX4.
doi_str_mv 10.1016/j.freeradbiomed.2011.12.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_922502518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584912000032</els_id><sourcerecordid>922502518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-51c828231c73b2d6f85046c9fac144b53210db4550d24174fced64b7dfdc0e363</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhi0EotvCXwBLHHpK8GfiiFO1Km3VQpFKz5ZjT3a9ytqLnV21_x5H2x64cfFI9vOOZx6EvlBSU0Kbr5t6SADJuN7HLbiaEUprymrCmjdoQVXLKyG75i1aENXRSirRnaDTnDeEECG5eo9OGGOK8q5boMMy-clbM-IUR8BxwOtnl-IKAt5Bik_eAc5-Fczowwr7gKd1uYA_ewiTLyljJ38wk49hzu64wj8uft1iExyGn_cPc2I0Wx9MwnkN8zklyPkDejeYMcPHl3qGHr9f_l5eV3f3VzfLi7vKipZNlaRWMcU4tS3vmWsGJYlobDcYS4XoJWeUuF5ISRwTtBWDBdeIvnWDswR4w8_Q-bHvLsUyc5701mcL42gCxH3WHWOSMElVIb8dSZtizgkGvUt-a9KzpkTP3vVG_-Ndz941Zbp4L-lPL__s-_ntNfsqugCfj8Bgojar5LN-fCgdJCGUN4rOxOWRgOLj4CHpbD2EspFPYCftov-vUf4CYo6lNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922502518</pqid></control><display><type>article</type><title>Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bretón-Romero, Rosa ; González de Orduña, Cecilia ; Romero, Natalia ; Sánchez-Gómez, Francisco J. ; de Álvaro, Cristina ; Porras, Almudena ; Rodríguez-Pascual, Fernando ; Laranjinha, Joao ; Radi, Rafael ; Lamas, Santiago</creator><creatorcontrib>Bretón-Romero, Rosa ; González de Orduña, Cecilia ; Romero, Natalia ; Sánchez-Gómez, Francisco J. ; de Álvaro, Cristina ; Porras, Almudena ; Rodríguez-Pascual, Fernando ; Laranjinha, Joao ; Radi, Rafael ; Lamas, Santiago</creatorcontrib><description>Laminar shear stress (LSS) is a protective hemodynamic regulator of endothelial function and limits the development of atherosclerosis and other vascular wall diseases related to pathophysiological generation of reactive oxygen species. LSS activates several endothelial signaling responses, including the activation of MAPKs and eNOS. Here, we explored the mechanisms of activation of these key endothelial signaling pathways. Using the cone/plate model we found that LSS (12dyn/cm2) rapidly promotes endothelial intracellular generation of superoxide and hydrogen peroxide (H2O2). Physiological concentrations of H2O2 (flux of 0.1nM/min and 15μM added extracellularly) significantly activated both eNOS and p38 MAPK. Pharmacological inhibition of NADPH oxidases (NOXs) and specific knockdown of NOX4 decreased LSS-induced p38 MAPK activation. Whereas the absence of eNOS did not alter LSS-induced p38 MAPK activation, pharmacological inhibition and knockdown of p38α MAPK blocked H2O2- and LSS-induced eNOS phosphorylation and reduced •NO levels. We propose a model in which LSS promotes the formation of signaling levels of H2O2, which in turn activate p38α MAPK and then stimulate eNOS, leading to increased •NO generation and protection of endothelial function. [Display omitted] ► Laminar shear stress (LSS) generates signaling levels of ROS in endothelial cells. ► Low levels of hydrogen peroxide activate p38 MAPK and eNOS. ► LSS-dependent activation of p38 MAPK is upstream of eNOS activation and NO synthesis. ► LSS-dependent activation of p38 MAPK requires peroxide generation by NOX4.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2011.12.026</identifier><identifier>PMID: 22281399</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; atherosclerosis ; Atherosclerosis - metabolism ; Atherosclerosis - pathology ; Cattle ; Cell Line ; Endothelial nitric oxide ; endothelial nitric oxide synthase ; Endothelium, Vascular - drug effects ; Endothelium, Vascular - metabolism ; Endothelium, Vascular - pathology ; Enzyme Activation - drug effects ; Enzyme Activation - genetics ; Enzyme Inhibitors - pharmacology ; Free radicals ; Hemodynamics ; Hydrogen peroxide ; Hydrogen Peroxide - metabolism ; Laminar shear stress ; Mice ; Mice, Knockout ; mitogen-activated protein kinase ; NADPH oxidase ; NADPH Oxidase 4 ; NADPH Oxidases - genetics ; NADPH Oxidases - metabolism ; nitric oxide ; Nitric Oxide Synthase Type III - genetics ; Nitric Oxide Synthase Type III - metabolism ; p38 MAPK ; p38 Mitogen-Activated Protein Kinases - metabolism ; phosphorylation ; Regional Blood Flow ; RNA, Small Interfering - genetics ; Shear Strength ; shear stress ; signal transduction ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Stress, Mechanical</subject><ispartof>Free radical biology &amp; medicine, 2012-03, Vol.52 (6), p.1093-1100</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-51c828231c73b2d6f85046c9fac144b53210db4550d24174fced64b7dfdc0e363</citedby><cites>FETCH-LOGICAL-c472t-51c828231c73b2d6f85046c9fac144b53210db4550d24174fced64b7dfdc0e363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0891584912000032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22281399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bretón-Romero, Rosa</creatorcontrib><creatorcontrib>González de Orduña, Cecilia</creatorcontrib><creatorcontrib>Romero, Natalia</creatorcontrib><creatorcontrib>Sánchez-Gómez, Francisco J.</creatorcontrib><creatorcontrib>de Álvaro, Cristina</creatorcontrib><creatorcontrib>Porras, Almudena</creatorcontrib><creatorcontrib>Rodríguez-Pascual, Fernando</creatorcontrib><creatorcontrib>Laranjinha, Joao</creatorcontrib><creatorcontrib>Radi, Rafael</creatorcontrib><creatorcontrib>Lamas, Santiago</creatorcontrib><title>Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress</title><title>Free radical biology &amp; medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Laminar shear stress (LSS) is a protective hemodynamic regulator of endothelial function and limits the development of atherosclerosis and other vascular wall diseases related to pathophysiological generation of reactive oxygen species. LSS activates several endothelial signaling responses, including the activation of MAPKs and eNOS. Here, we explored the mechanisms of activation of these key endothelial signaling pathways. Using the cone/plate model we found that LSS (12dyn/cm2) rapidly promotes endothelial intracellular generation of superoxide and hydrogen peroxide (H2O2). Physiological concentrations of H2O2 (flux of 0.1nM/min and 15μM added extracellularly) significantly activated both eNOS and p38 MAPK. Pharmacological inhibition of NADPH oxidases (NOXs) and specific knockdown of NOX4 decreased LSS-induced p38 MAPK activation. Whereas the absence of eNOS did not alter LSS-induced p38 MAPK activation, pharmacological inhibition and knockdown of p38α MAPK blocked H2O2- and LSS-induced eNOS phosphorylation and reduced •NO levels. We propose a model in which LSS promotes the formation of signaling levels of H2O2, which in turn activate p38α MAPK and then stimulate eNOS, leading to increased •NO generation and protection of endothelial function. [Display omitted] ► Laminar shear stress (LSS) generates signaling levels of ROS in endothelial cells. ► Low levels of hydrogen peroxide activate p38 MAPK and eNOS. ► LSS-dependent activation of p38 MAPK is upstream of eNOS activation and NO synthesis. ► LSS-dependent activation of p38 MAPK requires peroxide generation by NOX4.</description><subject>Animals</subject><subject>atherosclerosis</subject><subject>Atherosclerosis - metabolism</subject><subject>Atherosclerosis - pathology</subject><subject>Cattle</subject><subject>Cell Line</subject><subject>Endothelial nitric oxide</subject><subject>endothelial nitric oxide synthase</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Endothelium, Vascular - pathology</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Activation - genetics</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Free radicals</subject><subject>Hemodynamics</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Laminar shear stress</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>mitogen-activated protein kinase</subject><subject>NADPH oxidase</subject><subject>NADPH Oxidase 4</subject><subject>NADPH Oxidases - genetics</subject><subject>NADPH Oxidases - metabolism</subject><subject>nitric oxide</subject><subject>Nitric Oxide Synthase Type III - genetics</subject><subject>Nitric Oxide Synthase Type III - metabolism</subject><subject>p38 MAPK</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>phosphorylation</subject><subject>Regional Blood Flow</subject><subject>RNA, Small Interfering - genetics</subject><subject>Shear Strength</subject><subject>shear stress</subject><subject>signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Stress, Mechanical</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1v1DAQhi0EotvCXwBLHHpK8GfiiFO1Km3VQpFKz5ZjT3a9ytqLnV21_x5H2x64cfFI9vOOZx6EvlBSU0Kbr5t6SADJuN7HLbiaEUprymrCmjdoQVXLKyG75i1aENXRSirRnaDTnDeEECG5eo9OGGOK8q5boMMy-clbM-IUR8BxwOtnl-IKAt5Bik_eAc5-Fczowwr7gKd1uYA_ewiTLyljJ38wk49hzu64wj8uft1iExyGn_cPc2I0Wx9MwnkN8zklyPkDejeYMcPHl3qGHr9f_l5eV3f3VzfLi7vKipZNlaRWMcU4tS3vmWsGJYlobDcYS4XoJWeUuF5ISRwTtBWDBdeIvnWDswR4w8_Q-bHvLsUyc5701mcL42gCxH3WHWOSMElVIb8dSZtizgkGvUt-a9KzpkTP3vVG_-Ndz941Zbp4L-lPL__s-_ntNfsqugCfj8Bgojar5LN-fCgdJCGUN4rOxOWRgOLj4CHpbD2EspFPYCftov-vUf4CYo6lNw</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Bretón-Romero, Rosa</creator><creator>González de Orduña, Cecilia</creator><creator>Romero, Natalia</creator><creator>Sánchez-Gómez, Francisco J.</creator><creator>de Álvaro, Cristina</creator><creator>Porras, Almudena</creator><creator>Rodríguez-Pascual, Fernando</creator><creator>Laranjinha, Joao</creator><creator>Radi, Rafael</creator><creator>Lamas, Santiago</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120315</creationdate><title>Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress</title><author>Bretón-Romero, Rosa ; González de Orduña, Cecilia ; Romero, Natalia ; Sánchez-Gómez, Francisco J. ; de Álvaro, Cristina ; Porras, Almudena ; Rodríguez-Pascual, Fernando ; Laranjinha, Joao ; Radi, Rafael ; Lamas, Santiago</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-51c828231c73b2d6f85046c9fac144b53210db4550d24174fced64b7dfdc0e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>atherosclerosis</topic><topic>Atherosclerosis - metabolism</topic><topic>Atherosclerosis - pathology</topic><topic>Cattle</topic><topic>Cell Line</topic><topic>Endothelial nitric oxide</topic><topic>endothelial nitric oxide synthase</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Endothelium, Vascular - pathology</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Activation - genetics</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Free radicals</topic><topic>Hemodynamics</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Laminar shear stress</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>mitogen-activated protein kinase</topic><topic>NADPH oxidase</topic><topic>NADPH Oxidase 4</topic><topic>NADPH Oxidases - genetics</topic><topic>NADPH Oxidases - metabolism</topic><topic>nitric oxide</topic><topic>Nitric Oxide Synthase Type III - genetics</topic><topic>Nitric Oxide Synthase Type III - metabolism</topic><topic>p38 MAPK</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>phosphorylation</topic><topic>Regional Blood Flow</topic><topic>RNA, Small Interfering - genetics</topic><topic>Shear Strength</topic><topic>shear stress</topic><topic>signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bretón-Romero, Rosa</creatorcontrib><creatorcontrib>González de Orduña, Cecilia</creatorcontrib><creatorcontrib>Romero, Natalia</creatorcontrib><creatorcontrib>Sánchez-Gómez, Francisco J.</creatorcontrib><creatorcontrib>de Álvaro, Cristina</creatorcontrib><creatorcontrib>Porras, Almudena</creatorcontrib><creatorcontrib>Rodríguez-Pascual, Fernando</creatorcontrib><creatorcontrib>Laranjinha, Joao</creatorcontrib><creatorcontrib>Radi, Rafael</creatorcontrib><creatorcontrib>Lamas, Santiago</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bretón-Romero, Rosa</au><au>González de Orduña, Cecilia</au><au>Romero, Natalia</au><au>Sánchez-Gómez, Francisco J.</au><au>de Álvaro, Cristina</au><au>Porras, Almudena</au><au>Rodríguez-Pascual, Fernando</au><au>Laranjinha, Joao</au><au>Radi, Rafael</au><au>Lamas, Santiago</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress</atitle><jtitle>Free radical biology &amp; medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2012-03-15</date><risdate>2012</risdate><volume>52</volume><issue>6</issue><spage>1093</spage><epage>1100</epage><pages>1093-1100</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>Laminar shear stress (LSS) is a protective hemodynamic regulator of endothelial function and limits the development of atherosclerosis and other vascular wall diseases related to pathophysiological generation of reactive oxygen species. LSS activates several endothelial signaling responses, including the activation of MAPKs and eNOS. Here, we explored the mechanisms of activation of these key endothelial signaling pathways. Using the cone/plate model we found that LSS (12dyn/cm2) rapidly promotes endothelial intracellular generation of superoxide and hydrogen peroxide (H2O2). Physiological concentrations of H2O2 (flux of 0.1nM/min and 15μM added extracellularly) significantly activated both eNOS and p38 MAPK. Pharmacological inhibition of NADPH oxidases (NOXs) and specific knockdown of NOX4 decreased LSS-induced p38 MAPK activation. Whereas the absence of eNOS did not alter LSS-induced p38 MAPK activation, pharmacological inhibition and knockdown of p38α MAPK blocked H2O2- and LSS-induced eNOS phosphorylation and reduced •NO levels. We propose a model in which LSS promotes the formation of signaling levels of H2O2, which in turn activate p38α MAPK and then stimulate eNOS, leading to increased •NO generation and protection of endothelial function. [Display omitted] ► Laminar shear stress (LSS) generates signaling levels of ROS in endothelial cells. ► Low levels of hydrogen peroxide activate p38 MAPK and eNOS. ► LSS-dependent activation of p38 MAPK is upstream of eNOS activation and NO synthesis. ► LSS-dependent activation of p38 MAPK requires peroxide generation by NOX4.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22281399</pmid><doi>10.1016/j.freeradbiomed.2011.12.026</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0891-5849
ispartof Free radical biology & medicine, 2012-03, Vol.52 (6), p.1093-1100
issn 0891-5849
1873-4596
language eng
recordid cdi_proquest_miscellaneous_922502518
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
atherosclerosis
Atherosclerosis - metabolism
Atherosclerosis - pathology
Cattle
Cell Line
Endothelial nitric oxide
endothelial nitric oxide synthase
Endothelium, Vascular - drug effects
Endothelium, Vascular - metabolism
Endothelium, Vascular - pathology
Enzyme Activation - drug effects
Enzyme Activation - genetics
Enzyme Inhibitors - pharmacology
Free radicals
Hemodynamics
Hydrogen peroxide
Hydrogen Peroxide - metabolism
Laminar shear stress
Mice
Mice, Knockout
mitogen-activated protein kinase
NADPH oxidase
NADPH Oxidase 4
NADPH Oxidases - genetics
NADPH Oxidases - metabolism
nitric oxide
Nitric Oxide Synthase Type III - genetics
Nitric Oxide Synthase Type III - metabolism
p38 MAPK
p38 Mitogen-Activated Protein Kinases - metabolism
phosphorylation
Regional Blood Flow
RNA, Small Interfering - genetics
Shear Strength
shear stress
signal transduction
Signal Transduction - drug effects
Signal Transduction - genetics
Stress, Mechanical
title Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20role%20of%20hydrogen%20peroxide%20signaling%20in%20the%20sequential%20activation%20of%20p38%20MAPK%20and%20eNOS%20in%20laminar%20shear%20stress&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Bret%C3%B3n-Romero,%20Rosa&rft.date=2012-03-15&rft.volume=52&rft.issue=6&rft.spage=1093&rft.epage=1100&rft.pages=1093-1100&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2011.12.026&rft_dat=%3Cproquest_cross%3E922502518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922502518&rft_id=info:pmid/22281399&rft_els_id=S0891584912000032&rfr_iscdi=true