Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress
Laminar shear stress (LSS) is a protective hemodynamic regulator of endothelial function and limits the development of atherosclerosis and other vascular wall diseases related to pathophysiological generation of reactive oxygen species. LSS activates several endothelial signaling responses, includin...
Gespeichert in:
Veröffentlicht in: | Free radical biology & medicine 2012-03, Vol.52 (6), p.1093-1100 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1100 |
---|---|
container_issue | 6 |
container_start_page | 1093 |
container_title | Free radical biology & medicine |
container_volume | 52 |
creator | Bretón-Romero, Rosa González de Orduña, Cecilia Romero, Natalia Sánchez-Gómez, Francisco J. de Álvaro, Cristina Porras, Almudena Rodríguez-Pascual, Fernando Laranjinha, Joao Radi, Rafael Lamas, Santiago |
description | Laminar shear stress (LSS) is a protective hemodynamic regulator of endothelial function and limits the development of atherosclerosis and other vascular wall diseases related to pathophysiological generation of reactive oxygen species. LSS activates several endothelial signaling responses, including the activation of MAPKs and eNOS. Here, we explored the mechanisms of activation of these key endothelial signaling pathways. Using the cone/plate model we found that LSS (12dyn/cm2) rapidly promotes endothelial intracellular generation of superoxide and hydrogen peroxide (H2O2). Physiological concentrations of H2O2 (flux of 0.1nM/min and 15μM added extracellularly) significantly activated both eNOS and p38 MAPK. Pharmacological inhibition of NADPH oxidases (NOXs) and specific knockdown of NOX4 decreased LSS-induced p38 MAPK activation. Whereas the absence of eNOS did not alter LSS-induced p38 MAPK activation, pharmacological inhibition and knockdown of p38α MAPK blocked H2O2- and LSS-induced eNOS phosphorylation and reduced •NO levels. We propose a model in which LSS promotes the formation of signaling levels of H2O2, which in turn activate p38α MAPK and then stimulate eNOS, leading to increased •NO generation and protection of endothelial function.
[Display omitted]
► Laminar shear stress (LSS) generates signaling levels of ROS in endothelial cells. ► Low levels of hydrogen peroxide activate p38 MAPK and eNOS. ► LSS-dependent activation of p38 MAPK is upstream of eNOS activation and NO synthesis. ► LSS-dependent activation of p38 MAPK requires peroxide generation by NOX4. |
doi_str_mv | 10.1016/j.freeradbiomed.2011.12.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_922502518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584912000032</els_id><sourcerecordid>922502518</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-51c828231c73b2d6f85046c9fac144b53210db4550d24174fced64b7dfdc0e363</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhi0EotvCXwBLHHpK8GfiiFO1Km3VQpFKz5ZjT3a9ytqLnV21_x5H2x64cfFI9vOOZx6EvlBSU0Kbr5t6SADJuN7HLbiaEUprymrCmjdoQVXLKyG75i1aENXRSirRnaDTnDeEECG5eo9OGGOK8q5boMMy-clbM-IUR8BxwOtnl-IKAt5Bik_eAc5-Fczowwr7gKd1uYA_ewiTLyljJ38wk49hzu64wj8uft1iExyGn_cPc2I0Wx9MwnkN8zklyPkDejeYMcPHl3qGHr9f_l5eV3f3VzfLi7vKipZNlaRWMcU4tS3vmWsGJYlobDcYS4XoJWeUuF5ISRwTtBWDBdeIvnWDswR4w8_Q-bHvLsUyc5701mcL42gCxH3WHWOSMElVIb8dSZtizgkGvUt-a9KzpkTP3vVG_-Ndz941Zbp4L-lPL__s-_ntNfsqugCfj8Bgojar5LN-fCgdJCGUN4rOxOWRgOLj4CHpbD2EspFPYCftov-vUf4CYo6lNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922502518</pqid></control><display><type>article</type><title>Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bretón-Romero, Rosa ; González de Orduña, Cecilia ; Romero, Natalia ; Sánchez-Gómez, Francisco J. ; de Álvaro, Cristina ; Porras, Almudena ; Rodríguez-Pascual, Fernando ; Laranjinha, Joao ; Radi, Rafael ; Lamas, Santiago</creator><creatorcontrib>Bretón-Romero, Rosa ; González de Orduña, Cecilia ; Romero, Natalia ; Sánchez-Gómez, Francisco J. ; de Álvaro, Cristina ; Porras, Almudena ; Rodríguez-Pascual, Fernando ; Laranjinha, Joao ; Radi, Rafael ; Lamas, Santiago</creatorcontrib><description>Laminar shear stress (LSS) is a protective hemodynamic regulator of endothelial function and limits the development of atherosclerosis and other vascular wall diseases related to pathophysiological generation of reactive oxygen species. LSS activates several endothelial signaling responses, including the activation of MAPKs and eNOS. Here, we explored the mechanisms of activation of these key endothelial signaling pathways. Using the cone/plate model we found that LSS (12dyn/cm2) rapidly promotes endothelial intracellular generation of superoxide and hydrogen peroxide (H2O2). Physiological concentrations of H2O2 (flux of 0.1nM/min and 15μM added extracellularly) significantly activated both eNOS and p38 MAPK. Pharmacological inhibition of NADPH oxidases (NOXs) and specific knockdown of NOX4 decreased LSS-induced p38 MAPK activation. Whereas the absence of eNOS did not alter LSS-induced p38 MAPK activation, pharmacological inhibition and knockdown of p38α MAPK blocked H2O2- and LSS-induced eNOS phosphorylation and reduced •NO levels. We propose a model in which LSS promotes the formation of signaling levels of H2O2, which in turn activate p38α MAPK and then stimulate eNOS, leading to increased •NO generation and protection of endothelial function.
[Display omitted]
► Laminar shear stress (LSS) generates signaling levels of ROS in endothelial cells. ► Low levels of hydrogen peroxide activate p38 MAPK and eNOS. ► LSS-dependent activation of p38 MAPK is upstream of eNOS activation and NO synthesis. ► LSS-dependent activation of p38 MAPK requires peroxide generation by NOX4.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2011.12.026</identifier><identifier>PMID: 22281399</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; atherosclerosis ; Atherosclerosis - metabolism ; Atherosclerosis - pathology ; Cattle ; Cell Line ; Endothelial nitric oxide ; endothelial nitric oxide synthase ; Endothelium, Vascular - drug effects ; Endothelium, Vascular - metabolism ; Endothelium, Vascular - pathology ; Enzyme Activation - drug effects ; Enzyme Activation - genetics ; Enzyme Inhibitors - pharmacology ; Free radicals ; Hemodynamics ; Hydrogen peroxide ; Hydrogen Peroxide - metabolism ; Laminar shear stress ; Mice ; Mice, Knockout ; mitogen-activated protein kinase ; NADPH oxidase ; NADPH Oxidase 4 ; NADPH Oxidases - genetics ; NADPH Oxidases - metabolism ; nitric oxide ; Nitric Oxide Synthase Type III - genetics ; Nitric Oxide Synthase Type III - metabolism ; p38 MAPK ; p38 Mitogen-Activated Protein Kinases - metabolism ; phosphorylation ; Regional Blood Flow ; RNA, Small Interfering - genetics ; Shear Strength ; shear stress ; signal transduction ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Stress, Mechanical</subject><ispartof>Free radical biology & medicine, 2012-03, Vol.52 (6), p.1093-1100</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-51c828231c73b2d6f85046c9fac144b53210db4550d24174fced64b7dfdc0e363</citedby><cites>FETCH-LOGICAL-c472t-51c828231c73b2d6f85046c9fac144b53210db4550d24174fced64b7dfdc0e363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0891584912000032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22281399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bretón-Romero, Rosa</creatorcontrib><creatorcontrib>González de Orduña, Cecilia</creatorcontrib><creatorcontrib>Romero, Natalia</creatorcontrib><creatorcontrib>Sánchez-Gómez, Francisco J.</creatorcontrib><creatorcontrib>de Álvaro, Cristina</creatorcontrib><creatorcontrib>Porras, Almudena</creatorcontrib><creatorcontrib>Rodríguez-Pascual, Fernando</creatorcontrib><creatorcontrib>Laranjinha, Joao</creatorcontrib><creatorcontrib>Radi, Rafael</creatorcontrib><creatorcontrib>Lamas, Santiago</creatorcontrib><title>Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress</title><title>Free radical biology & medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Laminar shear stress (LSS) is a protective hemodynamic regulator of endothelial function and limits the development of atherosclerosis and other vascular wall diseases related to pathophysiological generation of reactive oxygen species. LSS activates several endothelial signaling responses, including the activation of MAPKs and eNOS. Here, we explored the mechanisms of activation of these key endothelial signaling pathways. Using the cone/plate model we found that LSS (12dyn/cm2) rapidly promotes endothelial intracellular generation of superoxide and hydrogen peroxide (H2O2). Physiological concentrations of H2O2 (flux of 0.1nM/min and 15μM added extracellularly) significantly activated both eNOS and p38 MAPK. Pharmacological inhibition of NADPH oxidases (NOXs) and specific knockdown of NOX4 decreased LSS-induced p38 MAPK activation. Whereas the absence of eNOS did not alter LSS-induced p38 MAPK activation, pharmacological inhibition and knockdown of p38α MAPK blocked H2O2- and LSS-induced eNOS phosphorylation and reduced •NO levels. We propose a model in which LSS promotes the formation of signaling levels of H2O2, which in turn activate p38α MAPK and then stimulate eNOS, leading to increased •NO generation and protection of endothelial function.
[Display omitted]
► Laminar shear stress (LSS) generates signaling levels of ROS in endothelial cells. ► Low levels of hydrogen peroxide activate p38 MAPK and eNOS. ► LSS-dependent activation of p38 MAPK is upstream of eNOS activation and NO synthesis. ► LSS-dependent activation of p38 MAPK requires peroxide generation by NOX4.</description><subject>Animals</subject><subject>atherosclerosis</subject><subject>Atherosclerosis - metabolism</subject><subject>Atherosclerosis - pathology</subject><subject>Cattle</subject><subject>Cell Line</subject><subject>Endothelial nitric oxide</subject><subject>endothelial nitric oxide synthase</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Endothelium, Vascular - pathology</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Activation - genetics</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Free radicals</subject><subject>Hemodynamics</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Laminar shear stress</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>mitogen-activated protein kinase</subject><subject>NADPH oxidase</subject><subject>NADPH Oxidase 4</subject><subject>NADPH Oxidases - genetics</subject><subject>NADPH Oxidases - metabolism</subject><subject>nitric oxide</subject><subject>Nitric Oxide Synthase Type III - genetics</subject><subject>Nitric Oxide Synthase Type III - metabolism</subject><subject>p38 MAPK</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>phosphorylation</subject><subject>Regional Blood Flow</subject><subject>RNA, Small Interfering - genetics</subject><subject>Shear Strength</subject><subject>shear stress</subject><subject>signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Stress, Mechanical</subject><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1v1DAQhi0EotvCXwBLHHpK8GfiiFO1Km3VQpFKz5ZjT3a9ytqLnV21_x5H2x64cfFI9vOOZx6EvlBSU0Kbr5t6SADJuN7HLbiaEUprymrCmjdoQVXLKyG75i1aENXRSirRnaDTnDeEECG5eo9OGGOK8q5boMMy-clbM-IUR8BxwOtnl-IKAt5Bik_eAc5-Fczowwr7gKd1uYA_ewiTLyljJ38wk49hzu64wj8uft1iExyGn_cPc2I0Wx9MwnkN8zklyPkDejeYMcPHl3qGHr9f_l5eV3f3VzfLi7vKipZNlaRWMcU4tS3vmWsGJYlobDcYS4XoJWeUuF5ISRwTtBWDBdeIvnWDswR4w8_Q-bHvLsUyc5701mcL42gCxH3WHWOSMElVIb8dSZtizgkGvUt-a9KzpkTP3vVG_-Ndz941Zbp4L-lPL__s-_ntNfsqugCfj8Bgojar5LN-fCgdJCGUN4rOxOWRgOLj4CHpbD2EspFPYCftov-vUf4CYo6lNw</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Bretón-Romero, Rosa</creator><creator>González de Orduña, Cecilia</creator><creator>Romero, Natalia</creator><creator>Sánchez-Gómez, Francisco J.</creator><creator>de Álvaro, Cristina</creator><creator>Porras, Almudena</creator><creator>Rodríguez-Pascual, Fernando</creator><creator>Laranjinha, Joao</creator><creator>Radi, Rafael</creator><creator>Lamas, Santiago</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120315</creationdate><title>Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress</title><author>Bretón-Romero, Rosa ; González de Orduña, Cecilia ; Romero, Natalia ; Sánchez-Gómez, Francisco J. ; de Álvaro, Cristina ; Porras, Almudena ; Rodríguez-Pascual, Fernando ; Laranjinha, Joao ; Radi, Rafael ; Lamas, Santiago</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-51c828231c73b2d6f85046c9fac144b53210db4550d24174fced64b7dfdc0e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>atherosclerosis</topic><topic>Atherosclerosis - metabolism</topic><topic>Atherosclerosis - pathology</topic><topic>Cattle</topic><topic>Cell Line</topic><topic>Endothelial nitric oxide</topic><topic>endothelial nitric oxide synthase</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Endothelium, Vascular - pathology</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Activation - genetics</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Free radicals</topic><topic>Hemodynamics</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Laminar shear stress</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>mitogen-activated protein kinase</topic><topic>NADPH oxidase</topic><topic>NADPH Oxidase 4</topic><topic>NADPH Oxidases - genetics</topic><topic>NADPH Oxidases - metabolism</topic><topic>nitric oxide</topic><topic>Nitric Oxide Synthase Type III - genetics</topic><topic>Nitric Oxide Synthase Type III - metabolism</topic><topic>p38 MAPK</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>phosphorylation</topic><topic>Regional Blood Flow</topic><topic>RNA, Small Interfering - genetics</topic><topic>Shear Strength</topic><topic>shear stress</topic><topic>signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bretón-Romero, Rosa</creatorcontrib><creatorcontrib>González de Orduña, Cecilia</creatorcontrib><creatorcontrib>Romero, Natalia</creatorcontrib><creatorcontrib>Sánchez-Gómez, Francisco J.</creatorcontrib><creatorcontrib>de Álvaro, Cristina</creatorcontrib><creatorcontrib>Porras, Almudena</creatorcontrib><creatorcontrib>Rodríguez-Pascual, Fernando</creatorcontrib><creatorcontrib>Laranjinha, Joao</creatorcontrib><creatorcontrib>Radi, Rafael</creatorcontrib><creatorcontrib>Lamas, Santiago</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Free radical biology & medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bretón-Romero, Rosa</au><au>González de Orduña, Cecilia</au><au>Romero, Natalia</au><au>Sánchez-Gómez, Francisco J.</au><au>de Álvaro, Cristina</au><au>Porras, Almudena</au><au>Rodríguez-Pascual, Fernando</au><au>Laranjinha, Joao</au><au>Radi, Rafael</au><au>Lamas, Santiago</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress</atitle><jtitle>Free radical biology & medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2012-03-15</date><risdate>2012</risdate><volume>52</volume><issue>6</issue><spage>1093</spage><epage>1100</epage><pages>1093-1100</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>Laminar shear stress (LSS) is a protective hemodynamic regulator of endothelial function and limits the development of atherosclerosis and other vascular wall diseases related to pathophysiological generation of reactive oxygen species. LSS activates several endothelial signaling responses, including the activation of MAPKs and eNOS. Here, we explored the mechanisms of activation of these key endothelial signaling pathways. Using the cone/plate model we found that LSS (12dyn/cm2) rapidly promotes endothelial intracellular generation of superoxide and hydrogen peroxide (H2O2). Physiological concentrations of H2O2 (flux of 0.1nM/min and 15μM added extracellularly) significantly activated both eNOS and p38 MAPK. Pharmacological inhibition of NADPH oxidases (NOXs) and specific knockdown of NOX4 decreased LSS-induced p38 MAPK activation. Whereas the absence of eNOS did not alter LSS-induced p38 MAPK activation, pharmacological inhibition and knockdown of p38α MAPK blocked H2O2- and LSS-induced eNOS phosphorylation and reduced •NO levels. We propose a model in which LSS promotes the formation of signaling levels of H2O2, which in turn activate p38α MAPK and then stimulate eNOS, leading to increased •NO generation and protection of endothelial function.
[Display omitted]
► Laminar shear stress (LSS) generates signaling levels of ROS in endothelial cells. ► Low levels of hydrogen peroxide activate p38 MAPK and eNOS. ► LSS-dependent activation of p38 MAPK is upstream of eNOS activation and NO synthesis. ► LSS-dependent activation of p38 MAPK requires peroxide generation by NOX4.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22281399</pmid><doi>10.1016/j.freeradbiomed.2011.12.026</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0891-5849 |
ispartof | Free radical biology & medicine, 2012-03, Vol.52 (6), p.1093-1100 |
issn | 0891-5849 1873-4596 |
language | eng |
recordid | cdi_proquest_miscellaneous_922502518 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals atherosclerosis Atherosclerosis - metabolism Atherosclerosis - pathology Cattle Cell Line Endothelial nitric oxide endothelial nitric oxide synthase Endothelium, Vascular - drug effects Endothelium, Vascular - metabolism Endothelium, Vascular - pathology Enzyme Activation - drug effects Enzyme Activation - genetics Enzyme Inhibitors - pharmacology Free radicals Hemodynamics Hydrogen peroxide Hydrogen Peroxide - metabolism Laminar shear stress Mice Mice, Knockout mitogen-activated protein kinase NADPH oxidase NADPH Oxidase 4 NADPH Oxidases - genetics NADPH Oxidases - metabolism nitric oxide Nitric Oxide Synthase Type III - genetics Nitric Oxide Synthase Type III - metabolism p38 MAPK p38 Mitogen-Activated Protein Kinases - metabolism phosphorylation Regional Blood Flow RNA, Small Interfering - genetics Shear Strength shear stress signal transduction Signal Transduction - drug effects Signal Transduction - genetics Stress, Mechanical |
title | Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20role%20of%20hydrogen%20peroxide%20signaling%20in%20the%20sequential%20activation%20of%20p38%20MAPK%20and%20eNOS%20in%20laminar%20shear%20stress&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Bret%C3%B3n-Romero,%20Rosa&rft.date=2012-03-15&rft.volume=52&rft.issue=6&rft.spage=1093&rft.epage=1100&rft.pages=1093-1100&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2011.12.026&rft_dat=%3Cproquest_cross%3E922502518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922502518&rft_id=info:pmid/22281399&rft_els_id=S0891584912000032&rfr_iscdi=true |