Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions
The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory within second quantization representation of the Fock space, a novel numerically exact methodology to treat many-body quantum dynamics for systems containing identical particles, is applied to study the effect of vibrational...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2011-12, Vol.135 (24), p.244506-244506-13 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 244506-13 |
---|---|
container_issue | 24 |
container_start_page | 244506 |
container_title | The Journal of chemical physics |
container_volume | 135 |
creator | Wang, Haobin Pshenichnyuk, Ivan Härtle, Rainer Thoss, Michael |
description | The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory within second quantization representation of the Fock space, a novel numerically exact methodology to treat many-body quantum dynamics for systems containing identical particles, is applied to study the effect of vibrational motion on electron transport in a generic model for single-molecule junctions. The results demonstrate the importance of electronic-vibrational coupling for the transport characteristics. For situations where the energy of the bridge state is located close to the Fermi energy, the simulations show the time-dependent formation of a polaron state that results in a pronounced suppression of the current corresponding to the phenomenon of phonon blockade. We show that this phenomenon cannot be explained solely by the polaron shift of the energy but requires methods that incorporate the dynamical effect of the vibrations on the transport. The accurate results obtained with the ML-MCTDH in this parameter regime are compared to results of nonequilibrium Green's function theory. |
doi_str_mv | 10.1063/1.3660206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_921430195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>921430195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-dea86af8d7de9fc57c01b7756353f7e9f38d4b2663d840022de64d96e6dba1333</originalsourceid><addsrcrecordid>eNqNkU9rFTEUxUNR7LN14ReQAReidGoymUkmCxdSrBVKu9F1yCR3JI9MMiaZ0n775v1RS0FpNjfk_s4h9x6EXhN8SjCjH8kpZQw3mB2gFcG9qDkT-BlaYdyQWjDMDtHLlNYYY8Kb9gU6bMrpCOtXKF8tE0SrlXN3FdwqnU-qbCeoDczgDfhc5QgqT5tbGKsbO0SVbfBbgQ7L7MBU4EDnGHxhlU9ziLmyvkrW_3RQT6F0FwfVevF6I03H6PmoXIJX-3qEfpx_-X52UV9ef_129vmy1h3luXxB9UyNveEGxKg7rjEZOO8Y7ejIyxPtTTs0jFHTt2XWxgBrjWDAzKAIpfQIvdv5zjH8WiBlOdmkwTnlISxJioa0FBPRFfLtI3IdlliGTLLhRJBeYCYK9X5H6RhSijDKOdpJxTtJsNwkIYncJ1HYN3vHZZjA_CF_r74An3ZA0jZvV_pvtwchyW1IMhf9hyfr_wffhPgXlLMZ6T0LOLZq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719189069</pqid></control><display><type>article</type><title>Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Wang, Haobin ; Pshenichnyuk, Ivan ; Härtle, Rainer ; Thoss, Michael</creator><creatorcontrib>Wang, Haobin ; Pshenichnyuk, Ivan ; Härtle, Rainer ; Thoss, Michael</creatorcontrib><description>The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory within second quantization representation of the Fock space, a novel numerically exact methodology to treat many-body quantum dynamics for systems containing identical particles, is applied to study the effect of vibrational motion on electron transport in a generic model for single-molecule junctions. The results demonstrate the importance of electronic-vibrational coupling for the transport characteristics. For situations where the energy of the bridge state is located close to the Fermi energy, the simulations show the time-dependent formation of a polaron state that results in a pronounced suppression of the current corresponding to the phenomenon of phonon blockade. We show that this phenomenon cannot be explained solely by the polaron shift of the energy but requires methods that incorporate the dynamical effect of the vibrations on the transport. The accurate results obtained with the ML-MCTDH in this parameter regime are compared to results of nonequilibrium Green's function theory.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3660206</identifier><identifier>PMID: 22225168</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coupling (molecular) ; Electron transport ; Green's functions ; Multilayers ; Polarons ; Time dependence ; Transport properties</subject><ispartof>The Journal of chemical physics, 2011-12, Vol.135 (24), p.244506-244506-13</ispartof><rights>American Institute of Physics</rights><rights>2011 American Institute of Physics</rights><rights>2011 American Institute of Physics.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-dea86af8d7de9fc57c01b7756353f7e9f38d4b2663d840022de64d96e6dba1333</citedby><cites>FETCH-LOGICAL-c537t-dea86af8d7de9fc57c01b7756353f7e9f38d4b2663d840022de64d96e6dba1333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.3660206$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,1560,4513,27929,27930,76389,76395</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22225168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haobin</creatorcontrib><creatorcontrib>Pshenichnyuk, Ivan</creatorcontrib><creatorcontrib>Härtle, Rainer</creatorcontrib><creatorcontrib>Thoss, Michael</creatorcontrib><title>Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory within second quantization representation of the Fock space, a novel numerically exact methodology to treat many-body quantum dynamics for systems containing identical particles, is applied to study the effect of vibrational motion on electron transport in a generic model for single-molecule junctions. The results demonstrate the importance of electronic-vibrational coupling for the transport characteristics. For situations where the energy of the bridge state is located close to the Fermi energy, the simulations show the time-dependent formation of a polaron state that results in a pronounced suppression of the current corresponding to the phenomenon of phonon blockade. We show that this phenomenon cannot be explained solely by the polaron shift of the energy but requires methods that incorporate the dynamical effect of the vibrations on the transport. The accurate results obtained with the ML-MCTDH in this parameter regime are compared to results of nonequilibrium Green's function theory.</description><subject>Coupling (molecular)</subject><subject>Electron transport</subject><subject>Green's functions</subject><subject>Multilayers</subject><subject>Polarons</subject><subject>Time dependence</subject><subject>Transport properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU9rFTEUxUNR7LN14ReQAReidGoymUkmCxdSrBVKu9F1yCR3JI9MMiaZ0n775v1RS0FpNjfk_s4h9x6EXhN8SjCjH8kpZQw3mB2gFcG9qDkT-BlaYdyQWjDMDtHLlNYYY8Kb9gU6bMrpCOtXKF8tE0SrlXN3FdwqnU-qbCeoDczgDfhc5QgqT5tbGKsbO0SVbfBbgQ7L7MBU4EDnGHxhlU9ziLmyvkrW_3RQT6F0FwfVevF6I03H6PmoXIJX-3qEfpx_-X52UV9ef_129vmy1h3luXxB9UyNveEGxKg7rjEZOO8Y7ejIyxPtTTs0jFHTt2XWxgBrjWDAzKAIpfQIvdv5zjH8WiBlOdmkwTnlISxJioa0FBPRFfLtI3IdlliGTLLhRJBeYCYK9X5H6RhSijDKOdpJxTtJsNwkIYncJ1HYN3vHZZjA_CF_r74An3ZA0jZvV_pvtwchyW1IMhf9hyfr_wffhPgXlLMZ6T0LOLZq</recordid><startdate>20111228</startdate><enddate>20111228</enddate><creator>Wang, Haobin</creator><creator>Pshenichnyuk, Ivan</creator><creator>Härtle, Rainer</creator><creator>Thoss, Michael</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20111228</creationdate><title>Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions</title><author>Wang, Haobin ; Pshenichnyuk, Ivan ; Härtle, Rainer ; Thoss, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-dea86af8d7de9fc57c01b7756353f7e9f38d4b2663d840022de64d96e6dba1333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coupling (molecular)</topic><topic>Electron transport</topic><topic>Green's functions</topic><topic>Multilayers</topic><topic>Polarons</topic><topic>Time dependence</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haobin</creatorcontrib><creatorcontrib>Pshenichnyuk, Ivan</creatorcontrib><creatorcontrib>Härtle, Rainer</creatorcontrib><creatorcontrib>Thoss, Michael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haobin</au><au>Pshenichnyuk, Ivan</au><au>Härtle, Rainer</au><au>Thoss, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2011-12-28</date><risdate>2011</risdate><volume>135</volume><issue>24</issue><spage>244506</spage><epage>244506-13</epage><pages>244506-244506-13</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory within second quantization representation of the Fock space, a novel numerically exact methodology to treat many-body quantum dynamics for systems containing identical particles, is applied to study the effect of vibrational motion on electron transport in a generic model for single-molecule junctions. The results demonstrate the importance of electronic-vibrational coupling for the transport characteristics. For situations where the energy of the bridge state is located close to the Fermi energy, the simulations show the time-dependent formation of a polaron state that results in a pronounced suppression of the current corresponding to the phenomenon of phonon blockade. We show that this phenomenon cannot be explained solely by the polaron shift of the energy but requires methods that incorporate the dynamical effect of the vibrations on the transport. The accurate results obtained with the ML-MCTDH in this parameter regime are compared to results of nonequilibrium Green's function theory.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>22225168</pmid><doi>10.1063/1.3660206</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2011-12, Vol.135 (24), p.244506-244506-13 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_921430195 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Coupling (molecular) Electron transport Green's functions Multilayers Polarons Time dependence Transport properties |
title | Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerically%20exact,%20time-dependent%20treatment%20of%20vibrationally%20coupled%20electron%20transport%20in%20single-molecule%20junctions&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Wang,%20Haobin&rft.date=2011-12-28&rft.volume=135&rft.issue=24&rft.spage=244506&rft.epage=244506-13&rft.pages=244506-244506-13&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.3660206&rft_dat=%3Cproquest_scita%3E921430195%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719189069&rft_id=info:pmid/22225168&rfr_iscdi=true |