Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions

The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory within second quantization representation of the Fock space, a novel numerically exact methodology to treat many-body quantum dynamics for systems containing identical particles, is applied to study the effect of vibrational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2011-12, Vol.135 (24), p.244506-244506-13
Hauptverfasser: Wang, Haobin, Pshenichnyuk, Ivan, Härtle, Rainer, Thoss, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244506-13
container_issue 24
container_start_page 244506
container_title The Journal of chemical physics
container_volume 135
creator Wang, Haobin
Pshenichnyuk, Ivan
Härtle, Rainer
Thoss, Michael
description The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory within second quantization representation of the Fock space, a novel numerically exact methodology to treat many-body quantum dynamics for systems containing identical particles, is applied to study the effect of vibrational motion on electron transport in a generic model for single-molecule junctions. The results demonstrate the importance of electronic-vibrational coupling for the transport characteristics. For situations where the energy of the bridge state is located close to the Fermi energy, the simulations show the time-dependent formation of a polaron state that results in a pronounced suppression of the current corresponding to the phenomenon of phonon blockade. We show that this phenomenon cannot be explained solely by the polaron shift of the energy but requires methods that incorporate the dynamical effect of the vibrations on the transport. The accurate results obtained with the ML-MCTDH in this parameter regime are compared to results of nonequilibrium Green's function theory.
doi_str_mv 10.1063/1.3660206
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_921430195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>921430195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-dea86af8d7de9fc57c01b7756353f7e9f38d4b2663d840022de64d96e6dba1333</originalsourceid><addsrcrecordid>eNqNkU9rFTEUxUNR7LN14ReQAReidGoymUkmCxdSrBVKu9F1yCR3JI9MMiaZ0n775v1RS0FpNjfk_s4h9x6EXhN8SjCjH8kpZQw3mB2gFcG9qDkT-BlaYdyQWjDMDtHLlNYYY8Kb9gU6bMrpCOtXKF8tE0SrlXN3FdwqnU-qbCeoDczgDfhc5QgqT5tbGKsbO0SVbfBbgQ7L7MBU4EDnGHxhlU9ziLmyvkrW_3RQT6F0FwfVevF6I03H6PmoXIJX-3qEfpx_-X52UV9ef_129vmy1h3luXxB9UyNveEGxKg7rjEZOO8Y7ejIyxPtTTs0jFHTt2XWxgBrjWDAzKAIpfQIvdv5zjH8WiBlOdmkwTnlISxJioa0FBPRFfLtI3IdlliGTLLhRJBeYCYK9X5H6RhSijDKOdpJxTtJsNwkIYncJ1HYN3vHZZjA_CF_r74An3ZA0jZvV_pvtwchyW1IMhf9hyfr_wffhPgXlLMZ6T0LOLZq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719189069</pqid></control><display><type>article</type><title>Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Wang, Haobin ; Pshenichnyuk, Ivan ; Härtle, Rainer ; Thoss, Michael</creator><creatorcontrib>Wang, Haobin ; Pshenichnyuk, Ivan ; Härtle, Rainer ; Thoss, Michael</creatorcontrib><description>The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory within second quantization representation of the Fock space, a novel numerically exact methodology to treat many-body quantum dynamics for systems containing identical particles, is applied to study the effect of vibrational motion on electron transport in a generic model for single-molecule junctions. The results demonstrate the importance of electronic-vibrational coupling for the transport characteristics. For situations where the energy of the bridge state is located close to the Fermi energy, the simulations show the time-dependent formation of a polaron state that results in a pronounced suppression of the current corresponding to the phenomenon of phonon blockade. We show that this phenomenon cannot be explained solely by the polaron shift of the energy but requires methods that incorporate the dynamical effect of the vibrations on the transport. The accurate results obtained with the ML-MCTDH in this parameter regime are compared to results of nonequilibrium Green's function theory.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3660206</identifier><identifier>PMID: 22225168</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Coupling (molecular) ; Electron transport ; Green's functions ; Multilayers ; Polarons ; Time dependence ; Transport properties</subject><ispartof>The Journal of chemical physics, 2011-12, Vol.135 (24), p.244506-244506-13</ispartof><rights>American Institute of Physics</rights><rights>2011 American Institute of Physics</rights><rights>2011 American Institute of Physics.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-dea86af8d7de9fc57c01b7756353f7e9f38d4b2663d840022de64d96e6dba1333</citedby><cites>FETCH-LOGICAL-c537t-dea86af8d7de9fc57c01b7756353f7e9f38d4b2663d840022de64d96e6dba1333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.3660206$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,1560,4513,27929,27930,76389,76395</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22225168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haobin</creatorcontrib><creatorcontrib>Pshenichnyuk, Ivan</creatorcontrib><creatorcontrib>Härtle, Rainer</creatorcontrib><creatorcontrib>Thoss, Michael</creatorcontrib><title>Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory within second quantization representation of the Fock space, a novel numerically exact methodology to treat many-body quantum dynamics for systems containing identical particles, is applied to study the effect of vibrational motion on electron transport in a generic model for single-molecule junctions. The results demonstrate the importance of electronic-vibrational coupling for the transport characteristics. For situations where the energy of the bridge state is located close to the Fermi energy, the simulations show the time-dependent formation of a polaron state that results in a pronounced suppression of the current corresponding to the phenomenon of phonon blockade. We show that this phenomenon cannot be explained solely by the polaron shift of the energy but requires methods that incorporate the dynamical effect of the vibrations on the transport. The accurate results obtained with the ML-MCTDH in this parameter regime are compared to results of nonequilibrium Green's function theory.</description><subject>Coupling (molecular)</subject><subject>Electron transport</subject><subject>Green's functions</subject><subject>Multilayers</subject><subject>Polarons</subject><subject>Time dependence</subject><subject>Transport properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU9rFTEUxUNR7LN14ReQAReidGoymUkmCxdSrBVKu9F1yCR3JI9MMiaZ0n775v1RS0FpNjfk_s4h9x6EXhN8SjCjH8kpZQw3mB2gFcG9qDkT-BlaYdyQWjDMDtHLlNYYY8Kb9gU6bMrpCOtXKF8tE0SrlXN3FdwqnU-qbCeoDczgDfhc5QgqT5tbGKsbO0SVbfBbgQ7L7MBU4EDnGHxhlU9ziLmyvkrW_3RQT6F0FwfVevF6I03H6PmoXIJX-3qEfpx_-X52UV9ef_129vmy1h3luXxB9UyNveEGxKg7rjEZOO8Y7ejIyxPtTTs0jFHTt2XWxgBrjWDAzKAIpfQIvdv5zjH8WiBlOdmkwTnlISxJioa0FBPRFfLtI3IdlliGTLLhRJBeYCYK9X5H6RhSijDKOdpJxTtJsNwkIYncJ1HYN3vHZZjA_CF_r74An3ZA0jZvV_pvtwchyW1IMhf9hyfr_wffhPgXlLMZ6T0LOLZq</recordid><startdate>20111228</startdate><enddate>20111228</enddate><creator>Wang, Haobin</creator><creator>Pshenichnyuk, Ivan</creator><creator>Härtle, Rainer</creator><creator>Thoss, Michael</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20111228</creationdate><title>Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions</title><author>Wang, Haobin ; Pshenichnyuk, Ivan ; Härtle, Rainer ; Thoss, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-dea86af8d7de9fc57c01b7756353f7e9f38d4b2663d840022de64d96e6dba1333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coupling (molecular)</topic><topic>Electron transport</topic><topic>Green's functions</topic><topic>Multilayers</topic><topic>Polarons</topic><topic>Time dependence</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haobin</creatorcontrib><creatorcontrib>Pshenichnyuk, Ivan</creatorcontrib><creatorcontrib>Härtle, Rainer</creatorcontrib><creatorcontrib>Thoss, Michael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haobin</au><au>Pshenichnyuk, Ivan</au><au>Härtle, Rainer</au><au>Thoss, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2011-12-28</date><risdate>2011</risdate><volume>135</volume><issue>24</issue><spage>244506</spage><epage>244506-13</epage><pages>244506-244506-13</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory within second quantization representation of the Fock space, a novel numerically exact methodology to treat many-body quantum dynamics for systems containing identical particles, is applied to study the effect of vibrational motion on electron transport in a generic model for single-molecule junctions. The results demonstrate the importance of electronic-vibrational coupling for the transport characteristics. For situations where the energy of the bridge state is located close to the Fermi energy, the simulations show the time-dependent formation of a polaron state that results in a pronounced suppression of the current corresponding to the phenomenon of phonon blockade. We show that this phenomenon cannot be explained solely by the polaron shift of the energy but requires methods that incorporate the dynamical effect of the vibrations on the transport. The accurate results obtained with the ML-MCTDH in this parameter regime are compared to results of nonequilibrium Green's function theory.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>22225168</pmid><doi>10.1063/1.3660206</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2011-12, Vol.135 (24), p.244506-244506-13
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_921430195
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Coupling (molecular)
Electron transport
Green's functions
Multilayers
Polarons
Time dependence
Transport properties
title Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerically%20exact,%20time-dependent%20treatment%20of%20vibrationally%20coupled%20electron%20transport%20in%20single-molecule%20junctions&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Wang,%20Haobin&rft.date=2011-12-28&rft.volume=135&rft.issue=24&rft.spage=244506&rft.epage=244506-13&rft.pages=244506-244506-13&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.3660206&rft_dat=%3Cproquest_scita%3E921430195%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719189069&rft_id=info:pmid/22225168&rfr_iscdi=true