Protein Model Discrimination Using Mutational Sensitivity Derived from Deep Sequencing
A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing...
Gespeichert in:
Veröffentlicht in: | Structure (London) 2012-02, Vol.20 (2), p.371-381 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 381 |
---|---|
container_issue | 2 |
container_start_page | 371 |
container_title | Structure (London) |
container_volume | 20 |
creator | Adkar, Bharat V. Tripathi, Arti Sahoo, Anusmita Bajaj, Kanika Goswami, Devrishi Chakrabarti, Purbani Swarnkar, Mohit K. Gokhale, Rajesh S. Varadarajan, Raghavan |
description | A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout.
[Display omitted]
► Individual mutant phenotypes in a saturation library derived via deep sequencing ► Residue depth and active-site residue derivation from mutant phenotypes ► Mutant-phenotype-derived parameters used for protein model discrimination ► Derivation of sequence-structure-function relationships without protein isolation |
doi_str_mv | 10.1016/j.str.2011.11.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_921425367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212612000068</els_id><sourcerecordid>921425367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-c3c3a4ba7d46f63961e508cfad7e4758dfeeedac76c80a233e7344901b1231b93</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk5_gDfSO73pzFfTFq9k8ws2FHTehiw5lYyunUk62L8329TLwYFwyPO-IQ9ClwQPCSbidjH0wQ0pJmQYB1NyhPqkyIuUk0Icoz4uRZlSQkUPnXm_wBjTDONT1KOU0SwveB99vrk2gG2SaWugTsbWa2eXtlHBtk0y87b5SqZd2K2qTt6h8TbYtQ2bZAzOrsEklWuXcYFVvP3uoNExc45OKlV7uPg9B2j2-PAxek4nr08vo_tJqjktQqqZZorPVW64qAQrBYEMF7pSJgeeZ4WpAMAonQtdYEUZg5xxXmIyJ5SReckG6Hrfu3JtfNsHuYw_gLpWDbSdlyUlnGZM5JG8OUhGoaVgnFISUbJHtWu9d1DJVXSi3CZCW07IhYzi5Va8jIN3mavf-m6-BPOf-DMdgbs9AFHH2oKTXtsoC4x1oIM0rT1Q_wPLJpQF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019634221</pqid></control><display><type>article</type><title>Protein Model Discrimination Using Mutational Sensitivity Derived from Deep Sequencing</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>Free Full-Text Journals in Chemistry</source><creator>Adkar, Bharat V. ; Tripathi, Arti ; Sahoo, Anusmita ; Bajaj, Kanika ; Goswami, Devrishi ; Chakrabarti, Purbani ; Swarnkar, Mohit K. ; Gokhale, Rajesh S. ; Varadarajan, Raghavan</creator><creatorcontrib>Adkar, Bharat V. ; Tripathi, Arti ; Sahoo, Anusmita ; Bajaj, Kanika ; Goswami, Devrishi ; Chakrabarti, Purbani ; Swarnkar, Mohit K. ; Gokhale, Rajesh S. ; Varadarajan, Raghavan</creatorcontrib><description>A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout.
[Display omitted]
► Individual mutant phenotypes in a saturation library derived via deep sequencing ► Residue depth and active-site residue derivation from mutant phenotypes ► Mutant-phenotype-derived parameters used for protein model discrimination ► Derivation of sequence-structure-function relationships without protein isolation</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2011.11.021</identifier><identifier>PMID: 22325784</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Amino Acid Substitution ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Catalytic Domain ; Cluster Analysis ; Computer Simulation ; Decoys ; Escherichia coli - genetics ; Escherichia coli - growth & development ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; High-Throughput Nucleotide Sequencing ; Mathematical models ; Methodology ; Models, Molecular ; Mutagenesis, Site-Directed ; Mutation ; Phenotype ; Pools ; Protein Conformation ; Proteins ; Residues ; Sequencing</subject><ispartof>Structure (London), 2012-02, Vol.20 (2), p.371-381</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-c3c3a4ba7d46f63961e508cfad7e4758dfeeedac76c80a233e7344901b1231b93</citedby><cites>FETCH-LOGICAL-c428t-c3c3a4ba7d46f63961e508cfad7e4758dfeeedac76c80a233e7344901b1231b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.str.2011.11.021$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22325784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adkar, Bharat V.</creatorcontrib><creatorcontrib>Tripathi, Arti</creatorcontrib><creatorcontrib>Sahoo, Anusmita</creatorcontrib><creatorcontrib>Bajaj, Kanika</creatorcontrib><creatorcontrib>Goswami, Devrishi</creatorcontrib><creatorcontrib>Chakrabarti, Purbani</creatorcontrib><creatorcontrib>Swarnkar, Mohit K.</creatorcontrib><creatorcontrib>Gokhale, Rajesh S.</creatorcontrib><creatorcontrib>Varadarajan, Raghavan</creatorcontrib><title>Protein Model Discrimination Using Mutational Sensitivity Derived from Deep Sequencing</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout.
[Display omitted]
► Individual mutant phenotypes in a saturation library derived via deep sequencing ► Residue depth and active-site residue derivation from mutant phenotypes ► Mutant-phenotype-derived parameters used for protein model discrimination ► Derivation of sequence-structure-function relationships without protein isolation</description><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Catalytic Domain</subject><subject>Cluster Analysis</subject><subject>Computer Simulation</subject><subject>Decoys</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth & development</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Models, Molecular</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Pools</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Residues</subject><subject>Sequencing</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1LwzAUhoMobk5_gDfSO73pzFfTFq9k8ws2FHTehiw5lYyunUk62L8329TLwYFwyPO-IQ9ClwQPCSbidjH0wQ0pJmQYB1NyhPqkyIuUk0Icoz4uRZlSQkUPnXm_wBjTDONT1KOU0SwveB99vrk2gG2SaWugTsbWa2eXtlHBtk0y87b5SqZd2K2qTt6h8TbYtQ2bZAzOrsEklWuXcYFVvP3uoNExc45OKlV7uPg9B2j2-PAxek4nr08vo_tJqjktQqqZZorPVW64qAQrBYEMF7pSJgeeZ4WpAMAonQtdYEUZg5xxXmIyJ5SReckG6Hrfu3JtfNsHuYw_gLpWDbSdlyUlnGZM5JG8OUhGoaVgnFISUbJHtWu9d1DJVXSi3CZCW07IhYzi5Va8jIN3mavf-m6-BPOf-DMdgbs9AFHH2oKTXtsoC4x1oIM0rT1Q_wPLJpQF</recordid><startdate>20120208</startdate><enddate>20120208</enddate><creator>Adkar, Bharat V.</creator><creator>Tripathi, Arti</creator><creator>Sahoo, Anusmita</creator><creator>Bajaj, Kanika</creator><creator>Goswami, Devrishi</creator><creator>Chakrabarti, Purbani</creator><creator>Swarnkar, Mohit K.</creator><creator>Gokhale, Rajesh S.</creator><creator>Varadarajan, Raghavan</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120208</creationdate><title>Protein Model Discrimination Using Mutational Sensitivity Derived from Deep Sequencing</title><author>Adkar, Bharat V. ; Tripathi, Arti ; Sahoo, Anusmita ; Bajaj, Kanika ; Goswami, Devrishi ; Chakrabarti, Purbani ; Swarnkar, Mohit K. ; Gokhale, Rajesh S. ; Varadarajan, Raghavan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-c3c3a4ba7d46f63961e508cfad7e4758dfeeedac76c80a233e7344901b1231b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Catalytic Domain</topic><topic>Cluster Analysis</topic><topic>Computer Simulation</topic><topic>Decoys</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth & development</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Models, Molecular</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Pools</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Residues</topic><topic>Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adkar, Bharat V.</creatorcontrib><creatorcontrib>Tripathi, Arti</creatorcontrib><creatorcontrib>Sahoo, Anusmita</creatorcontrib><creatorcontrib>Bajaj, Kanika</creatorcontrib><creatorcontrib>Goswami, Devrishi</creatorcontrib><creatorcontrib>Chakrabarti, Purbani</creatorcontrib><creatorcontrib>Swarnkar, Mohit K.</creatorcontrib><creatorcontrib>Gokhale, Rajesh S.</creatorcontrib><creatorcontrib>Varadarajan, Raghavan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adkar, Bharat V.</au><au>Tripathi, Arti</au><au>Sahoo, Anusmita</au><au>Bajaj, Kanika</au><au>Goswami, Devrishi</au><au>Chakrabarti, Purbani</au><au>Swarnkar, Mohit K.</au><au>Gokhale, Rajesh S.</au><au>Varadarajan, Raghavan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Model Discrimination Using Mutational Sensitivity Derived from Deep Sequencing</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2012-02-08</date><risdate>2012</risdate><volume>20</volume><issue>2</issue><spage>371</spage><epage>381</epage><pages>371-381</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout.
[Display omitted]
► Individual mutant phenotypes in a saturation library derived via deep sequencing ► Residue depth and active-site residue derivation from mutant phenotypes ► Mutant-phenotype-derived parameters used for protein model discrimination ► Derivation of sequence-structure-function relationships without protein isolation</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>22325784</pmid><doi>10.1016/j.str.2011.11.021</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-2126 |
ispartof | Structure (London), 2012-02, Vol.20 (2), p.371-381 |
issn | 0969-2126 1878-4186 |
language | eng |
recordid | cdi_proquest_miscellaneous_921425367 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Amino Acid Substitution Bacteria Bacterial Proteins - chemistry Bacterial Proteins - genetics Catalytic Domain Cluster Analysis Computer Simulation Decoys Escherichia coli - genetics Escherichia coli - growth & development Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics High-Throughput Nucleotide Sequencing Mathematical models Methodology Models, Molecular Mutagenesis, Site-Directed Mutation Phenotype Pools Protein Conformation Proteins Residues Sequencing |
title | Protein Model Discrimination Using Mutational Sensitivity Derived from Deep Sequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Model%20Discrimination%20Using%20Mutational%20Sensitivity%20Derived%20from%20Deep%20Sequencing&rft.jtitle=Structure%20(London)&rft.au=Adkar,%20Bharat%C2%A0V.&rft.date=2012-02-08&rft.volume=20&rft.issue=2&rft.spage=371&rft.epage=381&rft.pages=371-381&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2011.11.021&rft_dat=%3Cproquest_cross%3E921425367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019634221&rft_id=info:pmid/22325784&rft_els_id=S0969212612000068&rfr_iscdi=true |