Protein Model Discrimination Using Mutational Sensitivity Derived from Deep Sequencing

A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structure (London) 2012-02, Vol.20 (2), p.371-381
Hauptverfasser: Adkar, Bharat V., Tripathi, Arti, Sahoo, Anusmita, Bajaj, Kanika, Goswami, Devrishi, Chakrabarti, Purbani, Swarnkar, Mohit K., Gokhale, Rajesh S., Varadarajan, Raghavan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue 2
container_start_page 371
container_title Structure (London)
container_volume 20
creator Adkar, Bharat V.
Tripathi, Arti
Sahoo, Anusmita
Bajaj, Kanika
Goswami, Devrishi
Chakrabarti, Purbani
Swarnkar, Mohit K.
Gokhale, Rajesh S.
Varadarajan, Raghavan
description A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout. [Display omitted] ► Individual mutant phenotypes in a saturation library derived via deep sequencing ► Residue depth and active-site residue derivation from mutant phenotypes ► Mutant-phenotype-derived parameters used for protein model discrimination ► Derivation of sequence-structure-function relationships without protein isolation
doi_str_mv 10.1016/j.str.2011.11.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_921425367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212612000068</els_id><sourcerecordid>921425367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-c3c3a4ba7d46f63961e508cfad7e4758dfeeedac76c80a233e7344901b1231b93</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk5_gDfSO73pzFfTFq9k8ws2FHTehiw5lYyunUk62L8329TLwYFwyPO-IQ9ClwQPCSbidjH0wQ0pJmQYB1NyhPqkyIuUk0Icoz4uRZlSQkUPnXm_wBjTDONT1KOU0SwveB99vrk2gG2SaWugTsbWa2eXtlHBtk0y87b5SqZd2K2qTt6h8TbYtQ2bZAzOrsEklWuXcYFVvP3uoNExc45OKlV7uPg9B2j2-PAxek4nr08vo_tJqjktQqqZZorPVW64qAQrBYEMF7pSJgeeZ4WpAMAonQtdYEUZg5xxXmIyJ5SReckG6Hrfu3JtfNsHuYw_gLpWDbSdlyUlnGZM5JG8OUhGoaVgnFISUbJHtWu9d1DJVXSi3CZCW07IhYzi5Va8jIN3mavf-m6-BPOf-DMdgbs9AFHH2oKTXtsoC4x1oIM0rT1Q_wPLJpQF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019634221</pqid></control><display><type>article</type><title>Protein Model Discrimination Using Mutational Sensitivity Derived from Deep Sequencing</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>Free Full-Text Journals in Chemistry</source><creator>Adkar, Bharat V. ; Tripathi, Arti ; Sahoo, Anusmita ; Bajaj, Kanika ; Goswami, Devrishi ; Chakrabarti, Purbani ; Swarnkar, Mohit K. ; Gokhale, Rajesh S. ; Varadarajan, Raghavan</creator><creatorcontrib>Adkar, Bharat V. ; Tripathi, Arti ; Sahoo, Anusmita ; Bajaj, Kanika ; Goswami, Devrishi ; Chakrabarti, Purbani ; Swarnkar, Mohit K. ; Gokhale, Rajesh S. ; Varadarajan, Raghavan</creatorcontrib><description>A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout. [Display omitted] ► Individual mutant phenotypes in a saturation library derived via deep sequencing ► Residue depth and active-site residue derivation from mutant phenotypes ► Mutant-phenotype-derived parameters used for protein model discrimination ► Derivation of sequence-structure-function relationships without protein isolation</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2011.11.021</identifier><identifier>PMID: 22325784</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Amino Acid Substitution ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Catalytic Domain ; Cluster Analysis ; Computer Simulation ; Decoys ; Escherichia coli - genetics ; Escherichia coli - growth &amp; development ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; High-Throughput Nucleotide Sequencing ; Mathematical models ; Methodology ; Models, Molecular ; Mutagenesis, Site-Directed ; Mutation ; Phenotype ; Pools ; Protein Conformation ; Proteins ; Residues ; Sequencing</subject><ispartof>Structure (London), 2012-02, Vol.20 (2), p.371-381</ispartof><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-c3c3a4ba7d46f63961e508cfad7e4758dfeeedac76c80a233e7344901b1231b93</citedby><cites>FETCH-LOGICAL-c428t-c3c3a4ba7d46f63961e508cfad7e4758dfeeedac76c80a233e7344901b1231b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.str.2011.11.021$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22325784$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adkar, Bharat V.</creatorcontrib><creatorcontrib>Tripathi, Arti</creatorcontrib><creatorcontrib>Sahoo, Anusmita</creatorcontrib><creatorcontrib>Bajaj, Kanika</creatorcontrib><creatorcontrib>Goswami, Devrishi</creatorcontrib><creatorcontrib>Chakrabarti, Purbani</creatorcontrib><creatorcontrib>Swarnkar, Mohit K.</creatorcontrib><creatorcontrib>Gokhale, Rajesh S.</creatorcontrib><creatorcontrib>Varadarajan, Raghavan</creatorcontrib><title>Protein Model Discrimination Using Mutational Sensitivity Derived from Deep Sequencing</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout. [Display omitted] ► Individual mutant phenotypes in a saturation library derived via deep sequencing ► Residue depth and active-site residue derivation from mutant phenotypes ► Mutant-phenotype-derived parameters used for protein model discrimination ► Derivation of sequence-structure-function relationships without protein isolation</description><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Catalytic Domain</subject><subject>Cluster Analysis</subject><subject>Computer Simulation</subject><subject>Decoys</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Models, Molecular</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Pools</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Residues</subject><subject>Sequencing</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF1LwzAUhoMobk5_gDfSO73pzFfTFq9k8ws2FHTehiw5lYyunUk62L8329TLwYFwyPO-IQ9ClwQPCSbidjH0wQ0pJmQYB1NyhPqkyIuUk0Icoz4uRZlSQkUPnXm_wBjTDONT1KOU0SwveB99vrk2gG2SaWugTsbWa2eXtlHBtk0y87b5SqZd2K2qTt6h8TbYtQ2bZAzOrsEklWuXcYFVvP3uoNExc45OKlV7uPg9B2j2-PAxek4nr08vo_tJqjktQqqZZorPVW64qAQrBYEMF7pSJgeeZ4WpAMAonQtdYEUZg5xxXmIyJ5SReckG6Hrfu3JtfNsHuYw_gLpWDbSdlyUlnGZM5JG8OUhGoaVgnFISUbJHtWu9d1DJVXSi3CZCW07IhYzi5Va8jIN3mavf-m6-BPOf-DMdgbs9AFHH2oKTXtsoC4x1oIM0rT1Q_wPLJpQF</recordid><startdate>20120208</startdate><enddate>20120208</enddate><creator>Adkar, Bharat V.</creator><creator>Tripathi, Arti</creator><creator>Sahoo, Anusmita</creator><creator>Bajaj, Kanika</creator><creator>Goswami, Devrishi</creator><creator>Chakrabarti, Purbani</creator><creator>Swarnkar, Mohit K.</creator><creator>Gokhale, Rajesh S.</creator><creator>Varadarajan, Raghavan</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120208</creationdate><title>Protein Model Discrimination Using Mutational Sensitivity Derived from Deep Sequencing</title><author>Adkar, Bharat V. ; Tripathi, Arti ; Sahoo, Anusmita ; Bajaj, Kanika ; Goswami, Devrishi ; Chakrabarti, Purbani ; Swarnkar, Mohit K. ; Gokhale, Rajesh S. ; Varadarajan, Raghavan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-c3c3a4ba7d46f63961e508cfad7e4758dfeeedac76c80a233e7344901b1231b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Catalytic Domain</topic><topic>Cluster Analysis</topic><topic>Computer Simulation</topic><topic>Decoys</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Models, Molecular</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Pools</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Residues</topic><topic>Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adkar, Bharat V.</creatorcontrib><creatorcontrib>Tripathi, Arti</creatorcontrib><creatorcontrib>Sahoo, Anusmita</creatorcontrib><creatorcontrib>Bajaj, Kanika</creatorcontrib><creatorcontrib>Goswami, Devrishi</creatorcontrib><creatorcontrib>Chakrabarti, Purbani</creatorcontrib><creatorcontrib>Swarnkar, Mohit K.</creatorcontrib><creatorcontrib>Gokhale, Rajesh S.</creatorcontrib><creatorcontrib>Varadarajan, Raghavan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adkar, Bharat V.</au><au>Tripathi, Arti</au><au>Sahoo, Anusmita</au><au>Bajaj, Kanika</au><au>Goswami, Devrishi</au><au>Chakrabarti, Purbani</au><au>Swarnkar, Mohit K.</au><au>Gokhale, Rajesh S.</au><au>Varadarajan, Raghavan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Model Discrimination Using Mutational Sensitivity Derived from Deep Sequencing</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2012-02-08</date><risdate>2012</risdate><volume>20</volume><issue>2</issue><spage>371</spage><epage>381</epage><pages>371-381</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout. [Display omitted] ► Individual mutant phenotypes in a saturation library derived via deep sequencing ► Residue depth and active-site residue derivation from mutant phenotypes ► Mutant-phenotype-derived parameters used for protein model discrimination ► Derivation of sequence-structure-function relationships without protein isolation</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>22325784</pmid><doi>10.1016/j.str.2011.11.021</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-2126
ispartof Structure (London), 2012-02, Vol.20 (2), p.371-381
issn 0969-2126
1878-4186
language eng
recordid cdi_proquest_miscellaneous_921425367
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Amino Acid Substitution
Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Catalytic Domain
Cluster Analysis
Computer Simulation
Decoys
Escherichia coli - genetics
Escherichia coli - growth & development
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
High-Throughput Nucleotide Sequencing
Mathematical models
Methodology
Models, Molecular
Mutagenesis, Site-Directed
Mutation
Phenotype
Pools
Protein Conformation
Proteins
Residues
Sequencing
title Protein Model Discrimination Using Mutational Sensitivity Derived from Deep Sequencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Model%20Discrimination%20Using%20Mutational%20Sensitivity%20Derived%20from%20Deep%20Sequencing&rft.jtitle=Structure%20(London)&rft.au=Adkar,%20Bharat%C2%A0V.&rft.date=2012-02-08&rft.volume=20&rft.issue=2&rft.spage=371&rft.epage=381&rft.pages=371-381&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2011.11.021&rft_dat=%3Cproquest_cross%3E921425367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019634221&rft_id=info:pmid/22325784&rft_els_id=S0969212612000068&rfr_iscdi=true