Molecular Dynamics of a DNA Holliday Junction: The Inverted Repeat Sequence d(CCGGTACCGG)

All-atom molecular dynamics (MD) computer simulations have been applied successfully to duplex DNA structures in solution for some years and found to give close accord with observed results. However, the MD force fields have generally not been parameterized against unusual DNA structures, and their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2012-02, Vol.102 (3), p.552-560
Hauptverfasser: Wheatley, Elizabeth G, Pieniazek, Susan N, Mukerji, Ishita, Beveridge, D.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 560
container_issue 3
container_start_page 552
container_title Biophysical journal
container_volume 102
creator Wheatley, Elizabeth G
Pieniazek, Susan N
Mukerji, Ishita
Beveridge, D.L
description All-atom molecular dynamics (MD) computer simulations have been applied successfully to duplex DNA structures in solution for some years and found to give close accord with observed results. However, the MD force fields have generally not been parameterized against unusual DNA structures, and their use to obtain dynamical models for this class of systems needs to be independently validated. The four-way junction (4WJ), or Holliday junction, is a dynamic DNA structure involved in central cellular processes of homologous replication and double strand break repair. Two conformations are observed in solution: a planar open-X form (OPN) with a mobile center and four duplex arms, and an immobile stacked-X (STX) form with two continuous strands and two crossover strands, stabilized by high salt conditions. To characterize the accuracy of MD modeling on 4WJ, we report a set of explicit solvent MD simulations of ∼100 ns on the repeat sequence d(CCGGTACCGG)₄ starting from the STX structure (PDB code 1dcw), and an OPN structure built for the same sequence. All 4WJ MD simulations converged to a stable STX structure in close accord with the crystal structure. Our MD beginning in the OPN form converts to the STX form spontaneously at both high and low salt conditions, providing a model for the conformational transition. Thus, these simulations provide a successful account of the dynamical structure of the STX form of d(CCGGTACCGG)₄ in solution, and provide new, to our knowledge, information on the conformational stability of the junction and distribution of counterions in the junction interior.
doi_str_mv 10.1016/j.bpj.2011.11.4023
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_921425232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>921425232</sourcerecordid><originalsourceid>FETCH-LOGICAL-f164t-6a4eb266fa902b54e94a08698b857d9596c5120fa857972483fed8985b11dd713</originalsourceid><addsrcrecordid>eNo1kFFLwzAQx4Mobk6_gA-aN_WhNUmTtPFtdLpNpoLbHnwqaXPVjq6tTSvs2xvZhOOOgx_H_34IXVLiU0Ll_cZPm43PCKW-K05YcISGVHDmERLJYzQkhEgv4EoM0Jm1G0IoE4SeogFjARMsjIbo46UuIetL3eLJrtLbIrO4zrHGk9cxntVlWRi9w899lXVFXT3g1RfgefUDbQcGv0MDusNL-O6hygCb2zieTlfjv353jk5yXVq4OMwRWj89ruKZt3ibzuPxwsup5J0nNYeUSZlrRVgqOCiuXXoVpZEIjRJKZoIykmu3qpDxKMjBRCoSKaXGhDQYoZv93aatXQ7bJdvCZlCWuoK6t4lilLtnA-bIqwPZp1swSdMWW93ukn8bDrjeA7muE_3ZFjZZL51f4cxRxkIe_AJWM2gH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921425232</pqid></control><display><type>article</type><title>Molecular Dynamics of a DNA Holliday Junction: The Inverted Repeat Sequence d(CCGGTACCGG)</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wheatley, Elizabeth G ; Pieniazek, Susan N ; Mukerji, Ishita ; Beveridge, D.L</creator><creatorcontrib>Wheatley, Elizabeth G ; Pieniazek, Susan N ; Mukerji, Ishita ; Beveridge, D.L</creatorcontrib><description>All-atom molecular dynamics (MD) computer simulations have been applied successfully to duplex DNA structures in solution for some years and found to give close accord with observed results. However, the MD force fields have generally not been parameterized against unusual DNA structures, and their use to obtain dynamical models for this class of systems needs to be independently validated. The four-way junction (4WJ), or Holliday junction, is a dynamic DNA structure involved in central cellular processes of homologous replication and double strand break repair. Two conformations are observed in solution: a planar open-X form (OPN) with a mobile center and four duplex arms, and an immobile stacked-X (STX) form with two continuous strands and two crossover strands, stabilized by high salt conditions. To characterize the accuracy of MD modeling on 4WJ, we report a set of explicit solvent MD simulations of ∼100 ns on the repeat sequence d(CCGGTACCGG)₄ starting from the STX structure (PDB code 1dcw), and an OPN structure built for the same sequence. All 4WJ MD simulations converged to a stable STX structure in close accord with the crystal structure. Our MD beginning in the OPN form converts to the STX form spontaneously at both high and low salt conditions, providing a model for the conformational transition. Thus, these simulations provide a successful account of the dynamical structure of the STX form of d(CCGGTACCGG)₄ in solution, and provide new, to our knowledge, information on the conformational stability of the junction and distribution of counterions in the junction interior.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2011.11.4023</identifier><identifier>PMID: 22325278</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Base Sequence ; computer simulation ; crystal structure ; DNA ; DNA repair ; DNA, Cruciform - chemistry ; DNA, Cruciform - genetics ; dynamic models ; Inverted Repeat Sequences ; molecular dynamics ; Molecular Dynamics Simulation ; solvents</subject><ispartof>Biophysical journal, 2012-02, Vol.102 (3), p.552-560</ispartof><rights>Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22325278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wheatley, Elizabeth G</creatorcontrib><creatorcontrib>Pieniazek, Susan N</creatorcontrib><creatorcontrib>Mukerji, Ishita</creatorcontrib><creatorcontrib>Beveridge, D.L</creatorcontrib><title>Molecular Dynamics of a DNA Holliday Junction: The Inverted Repeat Sequence d(CCGGTACCGG)</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>All-atom molecular dynamics (MD) computer simulations have been applied successfully to duplex DNA structures in solution for some years and found to give close accord with observed results. However, the MD force fields have generally not been parameterized against unusual DNA structures, and their use to obtain dynamical models for this class of systems needs to be independently validated. The four-way junction (4WJ), or Holliday junction, is a dynamic DNA structure involved in central cellular processes of homologous replication and double strand break repair. Two conformations are observed in solution: a planar open-X form (OPN) with a mobile center and four duplex arms, and an immobile stacked-X (STX) form with two continuous strands and two crossover strands, stabilized by high salt conditions. To characterize the accuracy of MD modeling on 4WJ, we report a set of explicit solvent MD simulations of ∼100 ns on the repeat sequence d(CCGGTACCGG)₄ starting from the STX structure (PDB code 1dcw), and an OPN structure built for the same sequence. All 4WJ MD simulations converged to a stable STX structure in close accord with the crystal structure. Our MD beginning in the OPN form converts to the STX form spontaneously at both high and low salt conditions, providing a model for the conformational transition. Thus, these simulations provide a successful account of the dynamical structure of the STX form of d(CCGGTACCGG)₄ in solution, and provide new, to our knowledge, information on the conformational stability of the junction and distribution of counterions in the junction interior.</description><subject>Base Sequence</subject><subject>computer simulation</subject><subject>crystal structure</subject><subject>DNA</subject><subject>DNA repair</subject><subject>DNA, Cruciform - chemistry</subject><subject>DNA, Cruciform - genetics</subject><subject>dynamic models</subject><subject>Inverted Repeat Sequences</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>solvents</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kFFLwzAQx4Mobk6_gA-aN_WhNUmTtPFtdLpNpoLbHnwqaXPVjq6tTSvs2xvZhOOOgx_H_34IXVLiU0Ll_cZPm43PCKW-K05YcISGVHDmERLJYzQkhEgv4EoM0Jm1G0IoE4SeogFjARMsjIbo46UuIetL3eLJrtLbIrO4zrHGk9cxntVlWRi9w899lXVFXT3g1RfgefUDbQcGv0MDusNL-O6hygCb2zieTlfjv353jk5yXVq4OMwRWj89ruKZt3ibzuPxwsup5J0nNYeUSZlrRVgqOCiuXXoVpZEIjRJKZoIykmu3qpDxKMjBRCoSKaXGhDQYoZv93aatXQ7bJdvCZlCWuoK6t4lilLtnA-bIqwPZp1swSdMWW93ukn8bDrjeA7muE_3ZFjZZL51f4cxRxkIe_AJWM2gH</recordid><startdate>20120208</startdate><enddate>20120208</enddate><creator>Wheatley, Elizabeth G</creator><creator>Pieniazek, Susan N</creator><creator>Mukerji, Ishita</creator><creator>Beveridge, D.L</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20120208</creationdate><title>Molecular Dynamics of a DNA Holliday Junction: The Inverted Repeat Sequence d(CCGGTACCGG)</title><author>Wheatley, Elizabeth G ; Pieniazek, Susan N ; Mukerji, Ishita ; Beveridge, D.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f164t-6a4eb266fa902b54e94a08698b857d9596c5120fa857972483fed8985b11dd713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Base Sequence</topic><topic>computer simulation</topic><topic>crystal structure</topic><topic>DNA</topic><topic>DNA repair</topic><topic>DNA, Cruciform - chemistry</topic><topic>DNA, Cruciform - genetics</topic><topic>dynamic models</topic><topic>Inverted Repeat Sequences</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wheatley, Elizabeth G</creatorcontrib><creatorcontrib>Pieniazek, Susan N</creatorcontrib><creatorcontrib>Mukerji, Ishita</creatorcontrib><creatorcontrib>Beveridge, D.L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wheatley, Elizabeth G</au><au>Pieniazek, Susan N</au><au>Mukerji, Ishita</au><au>Beveridge, D.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics of a DNA Holliday Junction: The Inverted Repeat Sequence d(CCGGTACCGG)</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2012-02-08</date><risdate>2012</risdate><volume>102</volume><issue>3</issue><spage>552</spage><epage>560</epage><pages>552-560</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>All-atom molecular dynamics (MD) computer simulations have been applied successfully to duplex DNA structures in solution for some years and found to give close accord with observed results. However, the MD force fields have generally not been parameterized against unusual DNA structures, and their use to obtain dynamical models for this class of systems needs to be independently validated. The four-way junction (4WJ), or Holliday junction, is a dynamic DNA structure involved in central cellular processes of homologous replication and double strand break repair. Two conformations are observed in solution: a planar open-X form (OPN) with a mobile center and four duplex arms, and an immobile stacked-X (STX) form with two continuous strands and two crossover strands, stabilized by high salt conditions. To characterize the accuracy of MD modeling on 4WJ, we report a set of explicit solvent MD simulations of ∼100 ns on the repeat sequence d(CCGGTACCGG)₄ starting from the STX structure (PDB code 1dcw), and an OPN structure built for the same sequence. All 4WJ MD simulations converged to a stable STX structure in close accord with the crystal structure. Our MD beginning in the OPN form converts to the STX form spontaneously at both high and low salt conditions, providing a model for the conformational transition. Thus, these simulations provide a successful account of the dynamical structure of the STX form of d(CCGGTACCGG)₄ in solution, and provide new, to our knowledge, information on the conformational stability of the junction and distribution of counterions in the junction interior.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22325278</pmid><doi>10.1016/j.bpj.2011.11.4023</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2012-02, Vol.102 (3), p.552-560
issn 0006-3495
1542-0086
language eng
recordid cdi_proquest_miscellaneous_921425232
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Base Sequence
computer simulation
crystal structure
DNA
DNA repair
DNA, Cruciform - chemistry
DNA, Cruciform - genetics
dynamic models
Inverted Repeat Sequences
molecular dynamics
Molecular Dynamics Simulation
solvents
title Molecular Dynamics of a DNA Holliday Junction: The Inverted Repeat Sequence d(CCGGTACCGG)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T07%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20of%20a%20DNA%20Holliday%20Junction:%20The%20Inverted%20Repeat%20Sequence%20d(CCGGTACCGG)&rft.jtitle=Biophysical%20journal&rft.au=Wheatley,%20Elizabeth%C2%A0G&rft.date=2012-02-08&rft.volume=102&rft.issue=3&rft.spage=552&rft.epage=560&rft.pages=552-560&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2011.11.4023&rft_dat=%3Cproquest_pubme%3E921425232%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921425232&rft_id=info:pmid/22325278&rfr_iscdi=true