Molecular Dynamics of a DNA Holliday Junction: The Inverted Repeat Sequence d(CCGGTACCGG)
All-atom molecular dynamics (MD) computer simulations have been applied successfully to duplex DNA structures in solution for some years and found to give close accord with observed results. However, the MD force fields have generally not been parameterized against unusual DNA structures, and their...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2012-02, Vol.102 (3), p.552-560 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 560 |
---|---|
container_issue | 3 |
container_start_page | 552 |
container_title | Biophysical journal |
container_volume | 102 |
creator | Wheatley, Elizabeth G Pieniazek, Susan N Mukerji, Ishita Beveridge, D.L |
description | All-atom molecular dynamics (MD) computer simulations have been applied successfully to duplex DNA structures in solution for some years and found to give close accord with observed results. However, the MD force fields have generally not been parameterized against unusual DNA structures, and their use to obtain dynamical models for this class of systems needs to be independently validated. The four-way junction (4WJ), or Holliday junction, is a dynamic DNA structure involved in central cellular processes of homologous replication and double strand break repair. Two conformations are observed in solution: a planar open-X form (OPN) with a mobile center and four duplex arms, and an immobile stacked-X (STX) form with two continuous strands and two crossover strands, stabilized by high salt conditions. To characterize the accuracy of MD modeling on 4WJ, we report a set of explicit solvent MD simulations of ∼100 ns on the repeat sequence d(CCGGTACCGG)₄ starting from the STX structure (PDB code 1dcw), and an OPN structure built for the same sequence. All 4WJ MD simulations converged to a stable STX structure in close accord with the crystal structure. Our MD beginning in the OPN form converts to the STX form spontaneously at both high and low salt conditions, providing a model for the conformational transition. Thus, these simulations provide a successful account of the dynamical structure of the STX form of d(CCGGTACCGG)₄ in solution, and provide new, to our knowledge, information on the conformational stability of the junction and distribution of counterions in the junction interior. |
doi_str_mv | 10.1016/j.bpj.2011.11.4023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_921425232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>921425232</sourcerecordid><originalsourceid>FETCH-LOGICAL-f164t-6a4eb266fa902b54e94a08698b857d9596c5120fa857972483fed8985b11dd713</originalsourceid><addsrcrecordid>eNo1kFFLwzAQx4Mobk6_gA-aN_WhNUmTtPFtdLpNpoLbHnwqaXPVjq6tTSvs2xvZhOOOgx_H_34IXVLiU0Ll_cZPm43PCKW-K05YcISGVHDmERLJYzQkhEgv4EoM0Jm1G0IoE4SeogFjARMsjIbo46UuIetL3eLJrtLbIrO4zrHGk9cxntVlWRi9w899lXVFXT3g1RfgefUDbQcGv0MDusNL-O6hygCb2zieTlfjv353jk5yXVq4OMwRWj89ruKZt3ibzuPxwsup5J0nNYeUSZlrRVgqOCiuXXoVpZEIjRJKZoIykmu3qpDxKMjBRCoSKaXGhDQYoZv93aatXQ7bJdvCZlCWuoK6t4lilLtnA-bIqwPZp1swSdMWW93ukn8bDrjeA7muE_3ZFjZZL51f4cxRxkIe_AJWM2gH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921425232</pqid></control><display><type>article</type><title>Molecular Dynamics of a DNA Holliday Junction: The Inverted Repeat Sequence d(CCGGTACCGG)</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wheatley, Elizabeth G ; Pieniazek, Susan N ; Mukerji, Ishita ; Beveridge, D.L</creator><creatorcontrib>Wheatley, Elizabeth G ; Pieniazek, Susan N ; Mukerji, Ishita ; Beveridge, D.L</creatorcontrib><description>All-atom molecular dynamics (MD) computer simulations have been applied successfully to duplex DNA structures in solution for some years and found to give close accord with observed results. However, the MD force fields have generally not been parameterized against unusual DNA structures, and their use to obtain dynamical models for this class of systems needs to be independently validated. The four-way junction (4WJ), or Holliday junction, is a dynamic DNA structure involved in central cellular processes of homologous replication and double strand break repair. Two conformations are observed in solution: a planar open-X form (OPN) with a mobile center and four duplex arms, and an immobile stacked-X (STX) form with two continuous strands and two crossover strands, stabilized by high salt conditions. To characterize the accuracy of MD modeling on 4WJ, we report a set of explicit solvent MD simulations of ∼100 ns on the repeat sequence d(CCGGTACCGG)₄ starting from the STX structure (PDB code 1dcw), and an OPN structure built for the same sequence. All 4WJ MD simulations converged to a stable STX structure in close accord with the crystal structure. Our MD beginning in the OPN form converts to the STX form spontaneously at both high and low salt conditions, providing a model for the conformational transition. Thus, these simulations provide a successful account of the dynamical structure of the STX form of d(CCGGTACCGG)₄ in solution, and provide new, to our knowledge, information on the conformational stability of the junction and distribution of counterions in the junction interior.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2011.11.4023</identifier><identifier>PMID: 22325278</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Base Sequence ; computer simulation ; crystal structure ; DNA ; DNA repair ; DNA, Cruciform - chemistry ; DNA, Cruciform - genetics ; dynamic models ; Inverted Repeat Sequences ; molecular dynamics ; Molecular Dynamics Simulation ; solvents</subject><ispartof>Biophysical journal, 2012-02, Vol.102 (3), p.552-560</ispartof><rights>Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22325278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wheatley, Elizabeth G</creatorcontrib><creatorcontrib>Pieniazek, Susan N</creatorcontrib><creatorcontrib>Mukerji, Ishita</creatorcontrib><creatorcontrib>Beveridge, D.L</creatorcontrib><title>Molecular Dynamics of a DNA Holliday Junction: The Inverted Repeat Sequence d(CCGGTACCGG)</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>All-atom molecular dynamics (MD) computer simulations have been applied successfully to duplex DNA structures in solution for some years and found to give close accord with observed results. However, the MD force fields have generally not been parameterized against unusual DNA structures, and their use to obtain dynamical models for this class of systems needs to be independently validated. The four-way junction (4WJ), or Holliday junction, is a dynamic DNA structure involved in central cellular processes of homologous replication and double strand break repair. Two conformations are observed in solution: a planar open-X form (OPN) with a mobile center and four duplex arms, and an immobile stacked-X (STX) form with two continuous strands and two crossover strands, stabilized by high salt conditions. To characterize the accuracy of MD modeling on 4WJ, we report a set of explicit solvent MD simulations of ∼100 ns on the repeat sequence d(CCGGTACCGG)₄ starting from the STX structure (PDB code 1dcw), and an OPN structure built for the same sequence. All 4WJ MD simulations converged to a stable STX structure in close accord with the crystal structure. Our MD beginning in the OPN form converts to the STX form spontaneously at both high and low salt conditions, providing a model for the conformational transition. Thus, these simulations provide a successful account of the dynamical structure of the STX form of d(CCGGTACCGG)₄ in solution, and provide new, to our knowledge, information on the conformational stability of the junction and distribution of counterions in the junction interior.</description><subject>Base Sequence</subject><subject>computer simulation</subject><subject>crystal structure</subject><subject>DNA</subject><subject>DNA repair</subject><subject>DNA, Cruciform - chemistry</subject><subject>DNA, Cruciform - genetics</subject><subject>dynamic models</subject><subject>Inverted Repeat Sequences</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>solvents</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kFFLwzAQx4Mobk6_gA-aN_WhNUmTtPFtdLpNpoLbHnwqaXPVjq6tTSvs2xvZhOOOgx_H_34IXVLiU0Ll_cZPm43PCKW-K05YcISGVHDmERLJYzQkhEgv4EoM0Jm1G0IoE4SeogFjARMsjIbo46UuIetL3eLJrtLbIrO4zrHGk9cxntVlWRi9w899lXVFXT3g1RfgefUDbQcGv0MDusNL-O6hygCb2zieTlfjv353jk5yXVq4OMwRWj89ruKZt3ibzuPxwsup5J0nNYeUSZlrRVgqOCiuXXoVpZEIjRJKZoIykmu3qpDxKMjBRCoSKaXGhDQYoZv93aatXQ7bJdvCZlCWuoK6t4lilLtnA-bIqwPZp1swSdMWW93ukn8bDrjeA7muE_3ZFjZZL51f4cxRxkIe_AJWM2gH</recordid><startdate>20120208</startdate><enddate>20120208</enddate><creator>Wheatley, Elizabeth G</creator><creator>Pieniazek, Susan N</creator><creator>Mukerji, Ishita</creator><creator>Beveridge, D.L</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20120208</creationdate><title>Molecular Dynamics of a DNA Holliday Junction: The Inverted Repeat Sequence d(CCGGTACCGG)</title><author>Wheatley, Elizabeth G ; Pieniazek, Susan N ; Mukerji, Ishita ; Beveridge, D.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f164t-6a4eb266fa902b54e94a08698b857d9596c5120fa857972483fed8985b11dd713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Base Sequence</topic><topic>computer simulation</topic><topic>crystal structure</topic><topic>DNA</topic><topic>DNA repair</topic><topic>DNA, Cruciform - chemistry</topic><topic>DNA, Cruciform - genetics</topic><topic>dynamic models</topic><topic>Inverted Repeat Sequences</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wheatley, Elizabeth G</creatorcontrib><creatorcontrib>Pieniazek, Susan N</creatorcontrib><creatorcontrib>Mukerji, Ishita</creatorcontrib><creatorcontrib>Beveridge, D.L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wheatley, Elizabeth G</au><au>Pieniazek, Susan N</au><au>Mukerji, Ishita</au><au>Beveridge, D.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics of a DNA Holliday Junction: The Inverted Repeat Sequence d(CCGGTACCGG)</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2012-02-08</date><risdate>2012</risdate><volume>102</volume><issue>3</issue><spage>552</spage><epage>560</epage><pages>552-560</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>All-atom molecular dynamics (MD) computer simulations have been applied successfully to duplex DNA structures in solution for some years and found to give close accord with observed results. However, the MD force fields have generally not been parameterized against unusual DNA structures, and their use to obtain dynamical models for this class of systems needs to be independently validated. The four-way junction (4WJ), or Holliday junction, is a dynamic DNA structure involved in central cellular processes of homologous replication and double strand break repair. Two conformations are observed in solution: a planar open-X form (OPN) with a mobile center and four duplex arms, and an immobile stacked-X (STX) form with two continuous strands and two crossover strands, stabilized by high salt conditions. To characterize the accuracy of MD modeling on 4WJ, we report a set of explicit solvent MD simulations of ∼100 ns on the repeat sequence d(CCGGTACCGG)₄ starting from the STX structure (PDB code 1dcw), and an OPN structure built for the same sequence. All 4WJ MD simulations converged to a stable STX structure in close accord with the crystal structure. Our MD beginning in the OPN form converts to the STX form spontaneously at both high and low salt conditions, providing a model for the conformational transition. Thus, these simulations provide a successful account of the dynamical structure of the STX form of d(CCGGTACCGG)₄ in solution, and provide new, to our knowledge, information on the conformational stability of the junction and distribution of counterions in the junction interior.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22325278</pmid><doi>10.1016/j.bpj.2011.11.4023</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2012-02, Vol.102 (3), p.552-560 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_proquest_miscellaneous_921425232 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Base Sequence computer simulation crystal structure DNA DNA repair DNA, Cruciform - chemistry DNA, Cruciform - genetics dynamic models Inverted Repeat Sequences molecular dynamics Molecular Dynamics Simulation solvents |
title | Molecular Dynamics of a DNA Holliday Junction: The Inverted Repeat Sequence d(CCGGTACCGG) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T07%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20of%20a%20DNA%20Holliday%20Junction:%20The%20Inverted%20Repeat%20Sequence%20d(CCGGTACCGG)&rft.jtitle=Biophysical%20journal&rft.au=Wheatley,%20Elizabeth%C2%A0G&rft.date=2012-02-08&rft.volume=102&rft.issue=3&rft.spage=552&rft.epage=560&rft.pages=552-560&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2011.11.4023&rft_dat=%3Cproquest_pubme%3E921425232%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921425232&rft_id=info:pmid/22325278&rfr_iscdi=true |