BIAS REDUCTION FOR DYNAMIC NONLINEAR PANEL MODELS WITH FIXED EFFECTS

The fixed effects estimator of panel models can be severely biased because of well-known incidental parameter problems. It is shown that this bias can be reduced in nonlinear dynamic panel models. We consider asymptotics where n and T grow at the same rate as an approximation that facilitates compar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2011-12, Vol.27 (6), p.1152-1191
Hauptverfasser: Hahn, Jinyong, Kuersteiner, Guido
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1191
container_issue 6
container_start_page 1152
container_title Econometric theory
container_volume 27
creator Hahn, Jinyong
Kuersteiner, Guido
description The fixed effects estimator of panel models can be severely biased because of well-known incidental parameter problems. It is shown that this bias can be reduced in nonlinear dynamic panel models. We consider asymptotics where n and T grow at the same rate as an approximation that facilitates comparison of bias properties. Under these asymptotics, the bias-corrected estimators we propose are centered at the truth, whereas fixed effects estimators are not. We discuss several examples and provide Monte Carlo evidence for the small sample performance of our procedure.
doi_str_mv 10.1017/S0266466611000028
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_921289485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0266466611000028</cupid><jstor_id>41300604</jstor_id><sourcerecordid>41300604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-c3d679cb83ef8162cc41f2447ff468f4da11eb4437cfd1d30ba04b5c45f23ff53</originalsourceid><addsrcrecordid>eNp1kEFPg0AQhTdGE2v1B3gw2XjxhO7sbhc4IiyWhIIpNOqJwMKaNm2pbHvw30vTRhONc5nD-96byUPoGsg9ELAfMkKF4EIIANIPdU7QALhwLc4EOUWDvWzt9XN0YcyCEKCuzQYoeIy8DE9lMPPzKE1wmE5x8JZ4k8jHSZrEUSK9KX72EhnjSRrIOMMvUT7GYfQqAyzDUPp5donOdLk0zdVxD9EslLk_tuL0KfK92FLcga2lWC1sV1UOa7QDgirFQVPOba25cDSvS4Cm4pzZStdQM1KVhFcjxUeaMq1HbIjuDrmbrv3YNWZbrOZGNctluW7anSlcCtRxubMnb3-Ri3bXrfvnCpcIYtvMpj0EB0h1rTFdo4tNN1-V3WcBpNi3WvxptffcHDwLs227bwMHRvpc3uvsmFmuqm5evzc_l_9P_QIqaHrq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>906077372</pqid></control><display><type>article</type><title>BIAS REDUCTION FOR DYNAMIC NONLINEAR PANEL MODELS WITH FIXED EFFECTS</title><source>Cambridge Journals</source><source>Jstor Complete Legacy</source><creator>Hahn, Jinyong ; Kuersteiner, Guido</creator><creatorcontrib>Hahn, Jinyong ; Kuersteiner, Guido</creatorcontrib><description>The fixed effects estimator of panel models can be severely biased because of well-known incidental parameter problems. It is shown that this bias can be reduced in nonlinear dynamic panel models. We consider asymptotics where n and T grow at the same rate as an approximation that facilitates comparison of bias properties. Under these asymptotics, the bias-corrected estimators we propose are centered at the truth, whereas fixed effects estimators are not. We discuss several examples and provide Monte Carlo evidence for the small sample performance of our procedure.</description><identifier>ISSN: 0266-4666</identifier><identifier>EISSN: 1469-4360</identifier><identifier>DOI: 10.1017/S0266466611000028</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Approximation ; Bias ; Comparative analysis ; Data models ; Dynamic modeling ; Econometric models ; Econometrics ; Economic methodology ; Economic models ; Estimation ; Estimation bias ; Estimation methods ; Estimators ; Infinity ; Maximum likelihood estimation ; Normal distribution ; Studies ; Time series</subject><ispartof>Econometric theory, 2011-12, Vol.27 (6), p.1152-1191</ispartof><rights>Copyright © Cambridge University Press 2011</rights><rights>Cambridge University Press 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-c3d679cb83ef8162cc41f2447ff468f4da11eb4437cfd1d30ba04b5c45f23ff53</citedby><cites>FETCH-LOGICAL-c481t-c3d679cb83ef8162cc41f2447ff468f4da11eb4437cfd1d30ba04b5c45f23ff53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41300604$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0266466611000028/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,800,27905,27906,55609,57998,58231</link.rule.ids></links><search><creatorcontrib>Hahn, Jinyong</creatorcontrib><creatorcontrib>Kuersteiner, Guido</creatorcontrib><title>BIAS REDUCTION FOR DYNAMIC NONLINEAR PANEL MODELS WITH FIXED EFFECTS</title><title>Econometric theory</title><addtitle>Econom. Theory</addtitle><description>The fixed effects estimator of panel models can be severely biased because of well-known incidental parameter problems. It is shown that this bias can be reduced in nonlinear dynamic panel models. We consider asymptotics where n and T grow at the same rate as an approximation that facilitates comparison of bias properties. Under these asymptotics, the bias-corrected estimators we propose are centered at the truth, whereas fixed effects estimators are not. We discuss several examples and provide Monte Carlo evidence for the small sample performance of our procedure.</description><subject>Approximation</subject><subject>Bias</subject><subject>Comparative analysis</subject><subject>Data models</subject><subject>Dynamic modeling</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Economic methodology</subject><subject>Economic models</subject><subject>Estimation</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>Infinity</subject><subject>Maximum likelihood estimation</subject><subject>Normal distribution</subject><subject>Studies</subject><subject>Time series</subject><issn>0266-4666</issn><issn>1469-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEFPg0AQhTdGE2v1B3gw2XjxhO7sbhc4IiyWhIIpNOqJwMKaNm2pbHvw30vTRhONc5nD-96byUPoGsg9ELAfMkKF4EIIANIPdU7QALhwLc4EOUWDvWzt9XN0YcyCEKCuzQYoeIy8DE9lMPPzKE1wmE5x8JZ4k8jHSZrEUSK9KX72EhnjSRrIOMMvUT7GYfQqAyzDUPp5donOdLk0zdVxD9EslLk_tuL0KfK92FLcga2lWC1sV1UOa7QDgirFQVPOba25cDSvS4Cm4pzZStdQM1KVhFcjxUeaMq1HbIjuDrmbrv3YNWZbrOZGNctluW7anSlcCtRxubMnb3-Ri3bXrfvnCpcIYtvMpj0EB0h1rTFdo4tNN1-V3WcBpNi3WvxptffcHDwLs227bwMHRvpc3uvsmFmuqm5evzc_l_9P_QIqaHrq</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Hahn, Jinyong</creator><creator>Kuersteiner, Guido</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20111201</creationdate><title>BIAS REDUCTION FOR DYNAMIC NONLINEAR PANEL MODELS WITH FIXED EFFECTS</title><author>Hahn, Jinyong ; Kuersteiner, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-c3d679cb83ef8162cc41f2447ff468f4da11eb4437cfd1d30ba04b5c45f23ff53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Bias</topic><topic>Comparative analysis</topic><topic>Data models</topic><topic>Dynamic modeling</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Economic methodology</topic><topic>Economic models</topic><topic>Estimation</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>Infinity</topic><topic>Maximum likelihood estimation</topic><topic>Normal distribution</topic><topic>Studies</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hahn, Jinyong</creatorcontrib><creatorcontrib>Kuersteiner, Guido</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Econometric theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hahn, Jinyong</au><au>Kuersteiner, Guido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BIAS REDUCTION FOR DYNAMIC NONLINEAR PANEL MODELS WITH FIXED EFFECTS</atitle><jtitle>Econometric theory</jtitle><addtitle>Econom. Theory</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>27</volume><issue>6</issue><spage>1152</spage><epage>1191</epage><pages>1152-1191</pages><issn>0266-4666</issn><eissn>1469-4360</eissn><abstract>The fixed effects estimator of panel models can be severely biased because of well-known incidental parameter problems. It is shown that this bias can be reduced in nonlinear dynamic panel models. We consider asymptotics where n and T grow at the same rate as an approximation that facilitates comparison of bias properties. Under these asymptotics, the bias-corrected estimators we propose are centered at the truth, whereas fixed effects estimators are not. We discuss several examples and provide Monte Carlo evidence for the small sample performance of our procedure.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S0266466611000028</doi><tpages>40</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4666
ispartof Econometric theory, 2011-12, Vol.27 (6), p.1152-1191
issn 0266-4666
1469-4360
language eng
recordid cdi_proquest_miscellaneous_921289485
source Cambridge Journals; Jstor Complete Legacy
subjects Approximation
Bias
Comparative analysis
Data models
Dynamic modeling
Econometric models
Econometrics
Economic methodology
Economic models
Estimation
Estimation bias
Estimation methods
Estimators
Infinity
Maximum likelihood estimation
Normal distribution
Studies
Time series
title BIAS REDUCTION FOR DYNAMIC NONLINEAR PANEL MODELS WITH FIXED EFFECTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BIAS%20REDUCTION%20FOR%20DYNAMIC%20NONLINEAR%20PANEL%20MODELS%20WITH%20FIXED%20EFFECTS&rft.jtitle=Econometric%20theory&rft.au=Hahn,%20Jinyong&rft.date=2011-12-01&rft.volume=27&rft.issue=6&rft.spage=1152&rft.epage=1191&rft.pages=1152-1191&rft.issn=0266-4666&rft.eissn=1469-4360&rft_id=info:doi/10.1017/S0266466611000028&rft_dat=%3Cjstor_proqu%3E41300604%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=906077372&rft_id=info:pmid/&rft_cupid=10_1017_S0266466611000028&rft_jstor_id=41300604&rfr_iscdi=true