Climatic Controls on West Nile Virus and Sindbis Virus Transmission and Outbreaks in South Africa

The processes influencing the magnitude of West Nile virus (WNV) transmission from 1 year to the next require thorough investigation. The intensity of WNV transmission is related to the dynamics and interactions between the pathogen, vector, vertebrate hosts, and environment. Climatic variability is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vector borne and zoonotic diseases (Larchmont, N.Y.) N.Y.), 2012-02, Vol.12 (2), p.117-125
Hauptverfasser: Uejio, Christopher K., Kemp, Alan, Comrie, Andrew C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue 2
container_start_page 117
container_title Vector borne and zoonotic diseases (Larchmont, N.Y.)
container_volume 12
creator Uejio, Christopher K.
Kemp, Alan
Comrie, Andrew C.
description The processes influencing the magnitude of West Nile virus (WNV) transmission from 1 year to the next require thorough investigation. The intensity of WNV transmission is related to the dynamics and interactions between the pathogen, vector, vertebrate hosts, and environment. Climatic variability is one process that can influence interannual disease transmission. South Africa has a long WNV and Sindbis virus (SINV) record where consistent climate and disease relationships can be identified. We relate climate conditions to historic mosquito infection rates. Next, we detect similar associations with reported human outbreaks dating back to 1941. Both concurrent summer precipitation and the change in summer precipitation from the previous to the current summer were strongly associated with WNV and SINV transmission and recorded human outbreaks. Each 100 mm interannual summer precipitation change increased WNV infection rates by 0.39 WNV-positive Culex univittatus /1000 tested Cx. univittatus . An improved understanding of biotic and abiotic disease transmission dynamics may help anticipate and mitigate future outbreaks.
doi_str_mv 10.1089/vbz.2011.0655
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_921140221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1011205932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-7d39217c61ecbae853841eaad1921c2b6b0f9bac7e2f19adcb2a03eeba86b23d3</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EouUxsiJvsKT4USfxWEW8pIoOLTBGtnMjDKlT7AQJfj2OWhhhutbno0_3HoTOKJlQksurD_01YYTSCUmF2ENjKkSWZJmQ-8Obk4SnaTZCRyG8EsJoTsUhGjEqpWApGSNVNHatOmtw0brOt03ArcPPEDr8YBvAT9b3AStX4aV1lbZhl6y8cmFtQ7ARH74Xfac9qLeArcPLtu9e8Kz21qgTdFCrJsDpbh6jx5vrVXGXzBe398Vsnhieyi7JKi4ZzUxKwWgFueD5lIJSFY2xYTrVpJZamQxYTaWqjGaKcACt8lQzXvFjdLHt3fj2vY8HlHE9A02jHLR9KGMNnRLGaCQv_yRp1MmIkJxFNNmixrcheKjLjY--_GeEysF_Gf2Xg_9y8B_58111r9dQ_dI_wiPAt8AQK-caCxp890_tN5Scku8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011205932</pqid></control><display><type>article</type><title>Climatic Controls on West Nile Virus and Sindbis Virus Transmission and Outbreaks in South Africa</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Uejio, Christopher K. ; Kemp, Alan ; Comrie, Andrew C.</creator><creatorcontrib>Uejio, Christopher K. ; Kemp, Alan ; Comrie, Andrew C.</creatorcontrib><description>The processes influencing the magnitude of West Nile virus (WNV) transmission from 1 year to the next require thorough investigation. The intensity of WNV transmission is related to the dynamics and interactions between the pathogen, vector, vertebrate hosts, and environment. Climatic variability is one process that can influence interannual disease transmission. South Africa has a long WNV and Sindbis virus (SINV) record where consistent climate and disease relationships can be identified. We relate climate conditions to historic mosquito infection rates. Next, we detect similar associations with reported human outbreaks dating back to 1941. Both concurrent summer precipitation and the change in summer precipitation from the previous to the current summer were strongly associated with WNV and SINV transmission and recorded human outbreaks. Each 100 mm interannual summer precipitation change increased WNV infection rates by 0.39 WNV-positive Culex univittatus /1000 tested Cx. univittatus . An improved understanding of biotic and abiotic disease transmission dynamics may help anticipate and mitigate future outbreaks.</description><identifier>ISSN: 1530-3667</identifier><identifier>EISSN: 1557-7759</identifier><identifier>DOI: 10.1089/vbz.2011.0655</identifier><identifier>PMID: 21995260</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Alphavirus Infections - epidemiology ; Alphavirus Infections - transmission ; Animals ; Climate ; Columbidae - virology ; Culex - growth &amp; development ; Culex - virology ; Culex univittatus ; Culicidae - virology ; Disease Outbreaks ; Ecosystem ; Humans ; Insect Vectors - virology ; Original Articles ; Rain ; Regression Analysis ; Risk Factors ; Sentinel Surveillance ; Sindbis Virus ; South Africa - epidemiology ; West Nile Fever - epidemiology ; West Nile Fever - transmission ; West Nile virus</subject><ispartof>Vector borne and zoonotic diseases (Larchmont, N.Y.), 2012-02, Vol.12 (2), p.117-125</ispartof><rights>2012, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-7d39217c61ecbae853841eaad1921c2b6b0f9bac7e2f19adcb2a03eeba86b23d3</citedby><cites>FETCH-LOGICAL-c369t-7d39217c61ecbae853841eaad1921c2b6b0f9bac7e2f19adcb2a03eeba86b23d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21995260$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uejio, Christopher K.</creatorcontrib><creatorcontrib>Kemp, Alan</creatorcontrib><creatorcontrib>Comrie, Andrew C.</creatorcontrib><title>Climatic Controls on West Nile Virus and Sindbis Virus Transmission and Outbreaks in South Africa</title><title>Vector borne and zoonotic diseases (Larchmont, N.Y.)</title><addtitle>Vector Borne Zoonotic Dis</addtitle><description>The processes influencing the magnitude of West Nile virus (WNV) transmission from 1 year to the next require thorough investigation. The intensity of WNV transmission is related to the dynamics and interactions between the pathogen, vector, vertebrate hosts, and environment. Climatic variability is one process that can influence interannual disease transmission. South Africa has a long WNV and Sindbis virus (SINV) record where consistent climate and disease relationships can be identified. We relate climate conditions to historic mosquito infection rates. Next, we detect similar associations with reported human outbreaks dating back to 1941. Both concurrent summer precipitation and the change in summer precipitation from the previous to the current summer were strongly associated with WNV and SINV transmission and recorded human outbreaks. Each 100 mm interannual summer precipitation change increased WNV infection rates by 0.39 WNV-positive Culex univittatus /1000 tested Cx. univittatus . An improved understanding of biotic and abiotic disease transmission dynamics may help anticipate and mitigate future outbreaks.</description><subject>Alphavirus Infections - epidemiology</subject><subject>Alphavirus Infections - transmission</subject><subject>Animals</subject><subject>Climate</subject><subject>Columbidae - virology</subject><subject>Culex - growth &amp; development</subject><subject>Culex - virology</subject><subject>Culex univittatus</subject><subject>Culicidae - virology</subject><subject>Disease Outbreaks</subject><subject>Ecosystem</subject><subject>Humans</subject><subject>Insect Vectors - virology</subject><subject>Original Articles</subject><subject>Rain</subject><subject>Regression Analysis</subject><subject>Risk Factors</subject><subject>Sentinel Surveillance</subject><subject>Sindbis Virus</subject><subject>South Africa - epidemiology</subject><subject>West Nile Fever - epidemiology</subject><subject>West Nile Fever - transmission</subject><subject>West Nile virus</subject><issn>1530-3667</issn><issn>1557-7759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAURi0EouUxsiJvsKT4USfxWEW8pIoOLTBGtnMjDKlT7AQJfj2OWhhhutbno0_3HoTOKJlQksurD_01YYTSCUmF2ENjKkSWZJmQ-8Obk4SnaTZCRyG8EsJoTsUhGjEqpWApGSNVNHatOmtw0brOt03ArcPPEDr8YBvAT9b3AStX4aV1lbZhl6y8cmFtQ7ARH74Xfac9qLeArcPLtu9e8Kz21qgTdFCrJsDpbh6jx5vrVXGXzBe398Vsnhieyi7JKi4ZzUxKwWgFueD5lIJSFY2xYTrVpJZamQxYTaWqjGaKcACt8lQzXvFjdLHt3fj2vY8HlHE9A02jHLR9KGMNnRLGaCQv_yRp1MmIkJxFNNmixrcheKjLjY--_GeEysF_Gf2Xg_9y8B_58111r9dQ_dI_wiPAt8AQK-caCxp890_tN5Scku8</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Uejio, Christopher K.</creator><creator>Kemp, Alan</creator><creator>Comrie, Andrew C.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7U9</scope><scope>C1K</scope><scope>F1W</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20120201</creationdate><title>Climatic Controls on West Nile Virus and Sindbis Virus Transmission and Outbreaks in South Africa</title><author>Uejio, Christopher K. ; Kemp, Alan ; Comrie, Andrew C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-7d39217c61ecbae853841eaad1921c2b6b0f9bac7e2f19adcb2a03eeba86b23d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alphavirus Infections - epidemiology</topic><topic>Alphavirus Infections - transmission</topic><topic>Animals</topic><topic>Climate</topic><topic>Columbidae - virology</topic><topic>Culex - growth &amp; development</topic><topic>Culex - virology</topic><topic>Culex univittatus</topic><topic>Culicidae - virology</topic><topic>Disease Outbreaks</topic><topic>Ecosystem</topic><topic>Humans</topic><topic>Insect Vectors - virology</topic><topic>Original Articles</topic><topic>Rain</topic><topic>Regression Analysis</topic><topic>Risk Factors</topic><topic>Sentinel Surveillance</topic><topic>Sindbis Virus</topic><topic>South Africa - epidemiology</topic><topic>West Nile Fever - epidemiology</topic><topic>West Nile Fever - transmission</topic><topic>West Nile virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uejio, Christopher K.</creatorcontrib><creatorcontrib>Kemp, Alan</creatorcontrib><creatorcontrib>Comrie, Andrew C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Vector borne and zoonotic diseases (Larchmont, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uejio, Christopher K.</au><au>Kemp, Alan</au><au>Comrie, Andrew C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climatic Controls on West Nile Virus and Sindbis Virus Transmission and Outbreaks in South Africa</atitle><jtitle>Vector borne and zoonotic diseases (Larchmont, N.Y.)</jtitle><addtitle>Vector Borne Zoonotic Dis</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>12</volume><issue>2</issue><spage>117</spage><epage>125</epage><pages>117-125</pages><issn>1530-3667</issn><eissn>1557-7759</eissn><abstract>The processes influencing the magnitude of West Nile virus (WNV) transmission from 1 year to the next require thorough investigation. The intensity of WNV transmission is related to the dynamics and interactions between the pathogen, vector, vertebrate hosts, and environment. Climatic variability is one process that can influence interannual disease transmission. South Africa has a long WNV and Sindbis virus (SINV) record where consistent climate and disease relationships can be identified. We relate climate conditions to historic mosquito infection rates. Next, we detect similar associations with reported human outbreaks dating back to 1941. Both concurrent summer precipitation and the change in summer precipitation from the previous to the current summer were strongly associated with WNV and SINV transmission and recorded human outbreaks. Each 100 mm interannual summer precipitation change increased WNV infection rates by 0.39 WNV-positive Culex univittatus /1000 tested Cx. univittatus . An improved understanding of biotic and abiotic disease transmission dynamics may help anticipate and mitigate future outbreaks.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>21995260</pmid><doi>10.1089/vbz.2011.0655</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-3667
ispartof Vector borne and zoonotic diseases (Larchmont, N.Y.), 2012-02, Vol.12 (2), p.117-125
issn 1530-3667
1557-7759
language eng
recordid cdi_proquest_miscellaneous_921140221
source MEDLINE; Alma/SFX Local Collection
subjects Alphavirus Infections - epidemiology
Alphavirus Infections - transmission
Animals
Climate
Columbidae - virology
Culex - growth & development
Culex - virology
Culex univittatus
Culicidae - virology
Disease Outbreaks
Ecosystem
Humans
Insect Vectors - virology
Original Articles
Rain
Regression Analysis
Risk Factors
Sentinel Surveillance
Sindbis Virus
South Africa - epidemiology
West Nile Fever - epidemiology
West Nile Fever - transmission
West Nile virus
title Climatic Controls on West Nile Virus and Sindbis Virus Transmission and Outbreaks in South Africa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climatic%20Controls%20on%20West%20Nile%20Virus%20and%20Sindbis%20Virus%20Transmission%20and%20Outbreaks%20in%20South%20Africa&rft.jtitle=Vector%20borne%20and%20zoonotic%20diseases%20(Larchmont,%20N.Y.)&rft.au=Uejio,%20Christopher%20K.&rft.date=2012-02-01&rft.volume=12&rft.issue=2&rft.spage=117&rft.epage=125&rft.pages=117-125&rft.issn=1530-3667&rft.eissn=1557-7759&rft_id=info:doi/10.1089/vbz.2011.0655&rft_dat=%3Cproquest_cross%3E1011205932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011205932&rft_id=info:pmid/21995260&rfr_iscdi=true