Learning biases predict a word order universal

► Biases revealed during an artificial language learning task parallel word order typology. ► Learners tend to regularize variation in the input, but substantive knowledge affects the likelihood of regularization. ► Cognitive biases in word order learning can be modeled as Bayesian priors. How recur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognition 2012-03, Vol.122 (3), p.306-329
Hauptverfasser: Culbertson, Jennifer, Smolensky, Paul, Legendre, Géraldine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 329
container_issue 3
container_start_page 306
container_title Cognition
container_volume 122
creator Culbertson, Jennifer
Smolensky, Paul
Legendre, Géraldine
description ► Biases revealed during an artificial language learning task parallel word order typology. ► Learners tend to regularize variation in the input, but substantive knowledge affects the likelihood of regularization. ► Cognitive biases in word order learning can be modeled as Bayesian priors. How recurrent typological patterns, or universals, emerge from the extensive diversity found across the world’s languages constitutes a central question for linguistics and cognitive science. Recent challenges to a fundamental assumption of generative linguistics—that universal properties of the human language acquisition faculty constrain the types of grammatical systems which can occur—suggest the need for new types of empirical evidence connecting typology to biases of learners. Using an artificial language learning paradigm in which adult subjects are exposed to a mix of grammatical systems (similar to a period of linguistic change), we show that learners’ biases mirror a word-order universal, first proposed by Joseph Greenberg, which constrains typological patterns of adjective, numeral, and noun ordering. We briefly summarize the results of a probabilistic model of the hypothesized biases and their effect on learning, and discuss the broader implications of the results for current theories of the origins of cross-linguistic word-order preferences.
doi_str_mv 10.1016/j.cognition.2011.10.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920810755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ953940</ericid><els_id>S0010027711002745</els_id><sourcerecordid>918756936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-474cfbc6d639e1d1255e1bab87c71c7cb12081bb73d1b294da1115f54a7752793</originalsourceid><addsrcrecordid>eNqNkcFO3DAQhq0KBFvKG6CSC2ovCR47ziRHhIAWrdRLOVu2M0FeZZOtnaXi7etot9sb9GBZ8nzj356PsUvgBXCorleFG58HP_lxKAQHSKcFB_zAFlCjzLGW9RFbcA485wLxlH2MccU5LwXWJ-xUCMFrrNWCFUsyYfDDc2a9iRSzTaDWuykz2e8xtFlaFLLt4F8oRNN_Ysed6SOd7_cz9nR_9_P2W7788fD99maZOwX1lJdYus66qq1kQ9CCUIrAGlujQ3DoLKR8sBZlC1Y0ZWsAQHWqNIhKYCPP2JfdvZsw_tpSnPTaR0d9bwYat1E3cz9Hpd4n00BU1cjqP8hqzi55Ir--SQIXkss0ZEwo7lAXxhgDdXoT_NqE1wTpWZVe6YMqPauaC0lV6vy8D9naNbWHvr9uEnC1B0x0pu-CGZyP_zhVcRAoEnex4yh4dyjfPTZK7j5zsy8nXy-ego7O0-CS5kBu0u3o333rH4ZCvIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023037837</pqid></control><display><type>article</type><title>Learning biases predict a word order universal</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Culbertson, Jennifer ; Smolensky, Paul ; Legendre, Géraldine</creator><creatorcontrib>Culbertson, Jennifer ; Smolensky, Paul ; Legendre, Géraldine</creatorcontrib><description>► Biases revealed during an artificial language learning task parallel word order typology. ► Learners tend to regularize variation in the input, but substantive knowledge affects the likelihood of regularization. ► Cognitive biases in word order learning can be modeled as Bayesian priors. How recurrent typological patterns, or universals, emerge from the extensive diversity found across the world’s languages constitutes a central question for linguistics and cognitive science. Recent challenges to a fundamental assumption of generative linguistics—that universal properties of the human language acquisition faculty constrain the types of grammatical systems which can occur—suggest the need for new types of empirical evidence connecting typology to biases of learners. Using an artificial language learning paradigm in which adult subjects are exposed to a mix of grammatical systems (similar to a period of linguistic change), we show that learners’ biases mirror a word-order universal, first proposed by Joseph Greenberg, which constrains typological patterns of adjective, numeral, and noun ordering. We briefly summarize the results of a probabilistic model of the hypothesized biases and their effect on learning, and discuss the broader implications of the results for current theories of the origins of cross-linguistic word-order preferences.</description><identifier>ISSN: 0010-0277</identifier><identifier>EISSN: 1873-7838</identifier><identifier>DOI: 10.1016/j.cognition.2011.10.017</identifier><identifier>PMID: 22208785</identifier><identifier>CODEN: CGTNAU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adult ; Artificial Language Learning ; Artificial Languages ; Bayesian method ; Bayesian models ; Bias ; Biological and medical sciences ; Cognition ; Cognitive ability ; Cognitive Psychology ; Cognitive Science ; Faculty ; Form Classes (Languages) ; Fundamental and applied biological sciences. Psychology ; Grammar ; Greenberg, Joseph ; Humans ; Language ; Language Acquisition ; Learning ; Learning biases ; Linguistic research ; Linguistics ; Miscellaneous ; Nouns ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Typological analysis ; Typology ; Universals ; Video Games ; Word Order</subject><ispartof>Cognition, 2012-03, Vol.122 (3), p.306-329</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-474cfbc6d639e1d1255e1bab87c71c7cb12081bb73d1b294da1115f54a7752793</citedby><cites>FETCH-LOGICAL-c518t-474cfbc6d639e1d1255e1bab87c71c7cb12081bb73d1b294da1115f54a7752793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cognition.2011.10.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ953940$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25601272$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22208785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Culbertson, Jennifer</creatorcontrib><creatorcontrib>Smolensky, Paul</creatorcontrib><creatorcontrib>Legendre, Géraldine</creatorcontrib><title>Learning biases predict a word order universal</title><title>Cognition</title><addtitle>Cognition</addtitle><description>► Biases revealed during an artificial language learning task parallel word order typology. ► Learners tend to regularize variation in the input, but substantive knowledge affects the likelihood of regularization. ► Cognitive biases in word order learning can be modeled as Bayesian priors. How recurrent typological patterns, or universals, emerge from the extensive diversity found across the world’s languages constitutes a central question for linguistics and cognitive science. Recent challenges to a fundamental assumption of generative linguistics—that universal properties of the human language acquisition faculty constrain the types of grammatical systems which can occur—suggest the need for new types of empirical evidence connecting typology to biases of learners. Using an artificial language learning paradigm in which adult subjects are exposed to a mix of grammatical systems (similar to a period of linguistic change), we show that learners’ biases mirror a word-order universal, first proposed by Joseph Greenberg, which constrains typological patterns of adjective, numeral, and noun ordering. We briefly summarize the results of a probabilistic model of the hypothesized biases and their effect on learning, and discuss the broader implications of the results for current theories of the origins of cross-linguistic word-order preferences.</description><subject>Adult</subject><subject>Artificial Language Learning</subject><subject>Artificial Languages</subject><subject>Bayesian method</subject><subject>Bayesian models</subject><subject>Bias</subject><subject>Biological and medical sciences</subject><subject>Cognition</subject><subject>Cognitive ability</subject><subject>Cognitive Psychology</subject><subject>Cognitive Science</subject><subject>Faculty</subject><subject>Form Classes (Languages)</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Grammar</subject><subject>Greenberg, Joseph</subject><subject>Humans</subject><subject>Language</subject><subject>Language Acquisition</subject><subject>Learning</subject><subject>Learning biases</subject><subject>Linguistic research</subject><subject>Linguistics</subject><subject>Miscellaneous</subject><subject>Nouns</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Typological analysis</subject><subject>Typology</subject><subject>Universals</subject><subject>Video Games</subject><subject>Word Order</subject><issn>0010-0277</issn><issn>1873-7838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFO3DAQhq0KBFvKG6CSC2ovCR47ziRHhIAWrdRLOVu2M0FeZZOtnaXi7etot9sb9GBZ8nzj356PsUvgBXCorleFG58HP_lxKAQHSKcFB_zAFlCjzLGW9RFbcA485wLxlH2MccU5LwXWJ-xUCMFrrNWCFUsyYfDDc2a9iRSzTaDWuykz2e8xtFlaFLLt4F8oRNN_Ysed6SOd7_cz9nR_9_P2W7788fD99maZOwX1lJdYus66qq1kQ9CCUIrAGlujQ3DoLKR8sBZlC1Y0ZWsAQHWqNIhKYCPP2JfdvZsw_tpSnPTaR0d9bwYat1E3cz9Hpd4n00BU1cjqP8hqzi55Ir--SQIXkss0ZEwo7lAXxhgDdXoT_NqE1wTpWZVe6YMqPauaC0lV6vy8D9naNbWHvr9uEnC1B0x0pu-CGZyP_zhVcRAoEnex4yh4dyjfPTZK7j5zsy8nXy-ego7O0-CS5kBu0u3o333rH4ZCvIg</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Culbertson, Jennifer</creator><creator>Smolensky, Paul</creator><creator>Legendre, Géraldine</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope><scope>7X8</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7QG</scope><scope>7TK</scope></search><sort><creationdate>20120301</creationdate><title>Learning biases predict a word order universal</title><author>Culbertson, Jennifer ; Smolensky, Paul ; Legendre, Géraldine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-474cfbc6d639e1d1255e1bab87c71c7cb12081bb73d1b294da1115f54a7752793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adult</topic><topic>Artificial Language Learning</topic><topic>Artificial Languages</topic><topic>Bayesian method</topic><topic>Bayesian models</topic><topic>Bias</topic><topic>Biological and medical sciences</topic><topic>Cognition</topic><topic>Cognitive ability</topic><topic>Cognitive Psychology</topic><topic>Cognitive Science</topic><topic>Faculty</topic><topic>Form Classes (Languages)</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Grammar</topic><topic>Greenberg, Joseph</topic><topic>Humans</topic><topic>Language</topic><topic>Language Acquisition</topic><topic>Learning</topic><topic>Learning biases</topic><topic>Linguistic research</topic><topic>Linguistics</topic><topic>Miscellaneous</topic><topic>Nouns</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Typological analysis</topic><topic>Typology</topic><topic>Universals</topic><topic>Video Games</topic><topic>Word Order</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Culbertson, Jennifer</creatorcontrib><creatorcontrib>Smolensky, Paul</creatorcontrib><creatorcontrib>Legendre, Géraldine</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>MEDLINE - Academic</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><jtitle>Cognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Culbertson, Jennifer</au><au>Smolensky, Paul</au><au>Legendre, Géraldine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ953940</ericid><atitle>Learning biases predict a word order universal</atitle><jtitle>Cognition</jtitle><addtitle>Cognition</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>122</volume><issue>3</issue><spage>306</spage><epage>329</epage><pages>306-329</pages><issn>0010-0277</issn><eissn>1873-7838</eissn><coden>CGTNAU</coden><abstract>► Biases revealed during an artificial language learning task parallel word order typology. ► Learners tend to regularize variation in the input, but substantive knowledge affects the likelihood of regularization. ► Cognitive biases in word order learning can be modeled as Bayesian priors. How recurrent typological patterns, or universals, emerge from the extensive diversity found across the world’s languages constitutes a central question for linguistics and cognitive science. Recent challenges to a fundamental assumption of generative linguistics—that universal properties of the human language acquisition faculty constrain the types of grammatical systems which can occur—suggest the need for new types of empirical evidence connecting typology to biases of learners. Using an artificial language learning paradigm in which adult subjects are exposed to a mix of grammatical systems (similar to a period of linguistic change), we show that learners’ biases mirror a word-order universal, first proposed by Joseph Greenberg, which constrains typological patterns of adjective, numeral, and noun ordering. We briefly summarize the results of a probabilistic model of the hypothesized biases and their effect on learning, and discuss the broader implications of the results for current theories of the origins of cross-linguistic word-order preferences.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>22208785</pmid><doi>10.1016/j.cognition.2011.10.017</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-0277
ispartof Cognition, 2012-03, Vol.122 (3), p.306-329
issn 0010-0277
1873-7838
language eng
recordid cdi_proquest_miscellaneous_920810755
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Adult
Artificial Language Learning
Artificial Languages
Bayesian method
Bayesian models
Bias
Biological and medical sciences
Cognition
Cognitive ability
Cognitive Psychology
Cognitive Science
Faculty
Form Classes (Languages)
Fundamental and applied biological sciences. Psychology
Grammar
Greenberg, Joseph
Humans
Language
Language Acquisition
Learning
Learning biases
Linguistic research
Linguistics
Miscellaneous
Nouns
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Typological analysis
Typology
Universals
Video Games
Word Order
title Learning biases predict a word order universal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20biases%20predict%20a%20word%20order%20universal&rft.jtitle=Cognition&rft.au=Culbertson,%20Jennifer&rft.date=2012-03-01&rft.volume=122&rft.issue=3&rft.spage=306&rft.epage=329&rft.pages=306-329&rft.issn=0010-0277&rft.eissn=1873-7838&rft.coden=CGTNAU&rft_id=info:doi/10.1016/j.cognition.2011.10.017&rft_dat=%3Cproquest_cross%3E918756936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023037837&rft_id=info:pmid/22208785&rft_ericid=EJ953940&rft_els_id=S0010027711002745&rfr_iscdi=true