Composition Vector Method Based on Maximum Entropy Principle for Sequence Comparison

The composition vector (CV) method is an alignment-free method for sequence comparison. Because of its simplicity when compared with multiple sequence alignment methods, the method has been widely discussed lately; and some formulas based on probabilistic models, like Hao's and Yu's formul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics 2012-01, Vol.9 (1), p.79-87
Hauptverfasser: Chan, R. H., Chan, T. H., Hau Man Yeung, Wang, R. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue 1
container_start_page 79
container_title IEEE/ACM transactions on computational biology and bioinformatics
container_volume 9
creator Chan, R. H.
Chan, T. H.
Hau Man Yeung
Wang, R. W.
description The composition vector (CV) method is an alignment-free method for sequence comparison. Because of its simplicity when compared with multiple sequence alignment methods, the method has been widely discussed lately; and some formulas based on probabilistic models, like Hao's and Yu's formulas, have been proposed. In this paper, we improve these formulas by using the entropy principle which can quantify the nonrandomness occurrence of patterns in the sequences. More precisely, existing formulas are used to generate a set of possible formulas from which we choose the one that maximizes the entropy. We give the closed-form solution to the resulting optimization problem. Hence, from any given CV formula, we can find the corresponding one that maximizes the entropy. In particular, we show that Hao's formula is itself maximizing the entropy and we derive a new entropy-maximizing formula from Yu's formula. We illustrate the accuracy of our new formula by using both simulated and experimental data sets. For the simulated data sets, our new formula gives the best consensus and significant values for three different kinds of evolution models. For the data set of tetrapod 18S rRNA sequences, our new formula groups the clades of bird and reptile together correctly, where Hao's and Yu's formulas failed. Using real data sets with different sizes, we show that our formula is more accurate than Hao's and Yu's formulas even for small data sets.
doi_str_mv 10.1109/TCBB.2011.45
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_920807200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5728790</ieee_id><sourcerecordid>2525162811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-47d6ec1b284b49f71d24a5aa6da5533fd6a8cc7231ffbb41526bcddafbbe58c63</originalsourceid><addsrcrecordid>eNp90c1LHDEYBvBQKtVqb70VyuClHpxtvjM5dhdrBUWhW68hk7xDIzuTaTID-t83w6qHHnrK14-HNzwIfSR4RQjWX7eb9XpFMSErLt6gIyKEqrWW_O2y56IWWrJD9D7nB4wp15i_Q4eUsIZxIo_QdhP7MeYwhThU9-CmmKobmH5HX61tBl-V6xv7GPq5ry6GKcXxqbpLYXBh3EHVFf0T_swwOKiWJJtCjsMJOujsLsOH5_UY_fp-sd38qK9vL682365rxxSeaq68BEda2vCW604RT7kV1kpvhWCs89I2zinKSNe1LSeCytZ5b8sBROMkO0Zf9rljimWIPJk-ZAe7nR0gztloihusKMZFnv1XEs6IJJooVejpP_Qhzmko_zC6hImGCl7Q-R65FHNO0Jkxhd6mJ0OwWWoxSy1mqcVwUfjn58y57cG_4pceCvi0BwEAXp-Foo3SmP0FebSQmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907258254</pqid></control><display><type>article</type><title>Composition Vector Method Based on Maximum Entropy Principle for Sequence Comparison</title><source>IEEE Electronic Library (IEL)</source><creator>Chan, R. H. ; Chan, T. H. ; Hau Man Yeung ; Wang, R. W.</creator><creatorcontrib>Chan, R. H. ; Chan, T. H. ; Hau Man Yeung ; Wang, R. W.</creatorcontrib><description>The composition vector (CV) method is an alignment-free method for sequence comparison. Because of its simplicity when compared with multiple sequence alignment methods, the method has been widely discussed lately; and some formulas based on probabilistic models, like Hao's and Yu's formulas, have been proposed. In this paper, we improve these formulas by using the entropy principle which can quantify the nonrandomness occurrence of patterns in the sequences. More precisely, existing formulas are used to generate a set of possible formulas from which we choose the one that maximizes the entropy. We give the closed-form solution to the resulting optimization problem. Hence, from any given CV formula, we can find the corresponding one that maximizes the entropy. In particular, we show that Hao's formula is itself maximizing the entropy and we derive a new entropy-maximizing formula from Yu's formula. We illustrate the accuracy of our new formula by using both simulated and experimental data sets. For the simulated data sets, our new formula gives the best consensus and significant values for three different kinds of evolution models. For the data set of tetrapod 18S rRNA sequences, our new formula groups the clades of bird and reptile together correctly, where Hao's and Yu's formulas failed. Using real data sets with different sizes, we show that our formula is more accurate than Hao's and Yu's formulas even for small data sets.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2011.45</identifier><identifier>PMID: 21383416</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>alignment-free sequence comparison ; Animals ; Bacteria - classification ; Bacteria - genetics ; Bioinformatics ; Composition vector method ; Computational Biology - methods ; Computational modeling ; Computer Simulation ; Databases, Genetic ; Entropy ; Estimation ; Humans ; Markov Chains ; maximum entropy principle ; Models, Genetic ; Optimization ; optimization model ; phylogenetics ; Phylogeny ; Sequence Analysis, DNA - methods ; Strain ; Studies</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2012-01, Vol.9 (1), p.79-87</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan/Feb 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-47d6ec1b284b49f71d24a5aa6da5533fd6a8cc7231ffbb41526bcddafbbe58c63</citedby><cites>FETCH-LOGICAL-c370t-47d6ec1b284b49f71d24a5aa6da5533fd6a8cc7231ffbb41526bcddafbbe58c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5728790$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5728790$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21383416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chan, R. H.</creatorcontrib><creatorcontrib>Chan, T. H.</creatorcontrib><creatorcontrib>Hau Man Yeung</creatorcontrib><creatorcontrib>Wang, R. W.</creatorcontrib><title>Composition Vector Method Based on Maximum Entropy Principle for Sequence Comparison</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>The composition vector (CV) method is an alignment-free method for sequence comparison. Because of its simplicity when compared with multiple sequence alignment methods, the method has been widely discussed lately; and some formulas based on probabilistic models, like Hao's and Yu's formulas, have been proposed. In this paper, we improve these formulas by using the entropy principle which can quantify the nonrandomness occurrence of patterns in the sequences. More precisely, existing formulas are used to generate a set of possible formulas from which we choose the one that maximizes the entropy. We give the closed-form solution to the resulting optimization problem. Hence, from any given CV formula, we can find the corresponding one that maximizes the entropy. In particular, we show that Hao's formula is itself maximizing the entropy and we derive a new entropy-maximizing formula from Yu's formula. We illustrate the accuracy of our new formula by using both simulated and experimental data sets. For the simulated data sets, our new formula gives the best consensus and significant values for three different kinds of evolution models. For the data set of tetrapod 18S rRNA sequences, our new formula groups the clades of bird and reptile together correctly, where Hao's and Yu's formulas failed. Using real data sets with different sizes, we show that our formula is more accurate than Hao's and Yu's formulas even for small data sets.</description><subject>alignment-free sequence comparison</subject><subject>Animals</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bioinformatics</subject><subject>Composition vector method</subject><subject>Computational Biology - methods</subject><subject>Computational modeling</subject><subject>Computer Simulation</subject><subject>Databases, Genetic</subject><subject>Entropy</subject><subject>Estimation</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>maximum entropy principle</subject><subject>Models, Genetic</subject><subject>Optimization</subject><subject>optimization model</subject><subject>phylogenetics</subject><subject>Phylogeny</subject><subject>Sequence Analysis, DNA - methods</subject><subject>Strain</subject><subject>Studies</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90c1LHDEYBvBQKtVqb70VyuClHpxtvjM5dhdrBUWhW68hk7xDIzuTaTID-t83w6qHHnrK14-HNzwIfSR4RQjWX7eb9XpFMSErLt6gIyKEqrWW_O2y56IWWrJD9D7nB4wp15i_Q4eUsIZxIo_QdhP7MeYwhThU9-CmmKobmH5HX61tBl-V6xv7GPq5ry6GKcXxqbpLYXBh3EHVFf0T_swwOKiWJJtCjsMJOujsLsOH5_UY_fp-sd38qK9vL682365rxxSeaq68BEda2vCW604RT7kV1kpvhWCs89I2zinKSNe1LSeCytZ5b8sBROMkO0Zf9rljimWIPJk-ZAe7nR0gztloihusKMZFnv1XEs6IJJooVejpP_Qhzmko_zC6hImGCl7Q-R65FHNO0Jkxhd6mJ0OwWWoxSy1mqcVwUfjn58y57cG_4pceCvi0BwEAXp-Foo3SmP0FebSQmg</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Chan, R. H.</creator><creator>Chan, T. H.</creator><creator>Hau Man Yeung</creator><creator>Wang, R. W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201201</creationdate><title>Composition Vector Method Based on Maximum Entropy Principle for Sequence Comparison</title><author>Chan, R. H. ; Chan, T. H. ; Hau Man Yeung ; Wang, R. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-47d6ec1b284b49f71d24a5aa6da5533fd6a8cc7231ffbb41526bcddafbbe58c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>alignment-free sequence comparison</topic><topic>Animals</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bioinformatics</topic><topic>Composition vector method</topic><topic>Computational Biology - methods</topic><topic>Computational modeling</topic><topic>Computer Simulation</topic><topic>Databases, Genetic</topic><topic>Entropy</topic><topic>Estimation</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>maximum entropy principle</topic><topic>Models, Genetic</topic><topic>Optimization</topic><topic>optimization model</topic><topic>phylogenetics</topic><topic>Phylogeny</topic><topic>Sequence Analysis, DNA - methods</topic><topic>Strain</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, R. H.</creatorcontrib><creatorcontrib>Chan, T. H.</creatorcontrib><creatorcontrib>Hau Man Yeung</creatorcontrib><creatorcontrib>Wang, R. W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chan, R. H.</au><au>Chan, T. H.</au><au>Hau Man Yeung</au><au>Wang, R. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition Vector Method Based on Maximum Entropy Principle for Sequence Comparison</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2012-01</date><risdate>2012</risdate><volume>9</volume><issue>1</issue><spage>79</spage><epage>87</epage><pages>79-87</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>The composition vector (CV) method is an alignment-free method for sequence comparison. Because of its simplicity when compared with multiple sequence alignment methods, the method has been widely discussed lately; and some formulas based on probabilistic models, like Hao's and Yu's formulas, have been proposed. In this paper, we improve these formulas by using the entropy principle which can quantify the nonrandomness occurrence of patterns in the sequences. More precisely, existing formulas are used to generate a set of possible formulas from which we choose the one that maximizes the entropy. We give the closed-form solution to the resulting optimization problem. Hence, from any given CV formula, we can find the corresponding one that maximizes the entropy. In particular, we show that Hao's formula is itself maximizing the entropy and we derive a new entropy-maximizing formula from Yu's formula. We illustrate the accuracy of our new formula by using both simulated and experimental data sets. For the simulated data sets, our new formula gives the best consensus and significant values for three different kinds of evolution models. For the data set of tetrapod 18S rRNA sequences, our new formula groups the clades of bird and reptile together correctly, where Hao's and Yu's formulas failed. Using real data sets with different sizes, we show that our formula is more accurate than Hao's and Yu's formulas even for small data sets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>21383416</pmid><doi>10.1109/TCBB.2011.45</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5963
ispartof IEEE/ACM transactions on computational biology and bioinformatics, 2012-01, Vol.9 (1), p.79-87
issn 1545-5963
1557-9964
language eng
recordid cdi_proquest_miscellaneous_920807200
source IEEE Electronic Library (IEL)
subjects alignment-free sequence comparison
Animals
Bacteria - classification
Bacteria - genetics
Bioinformatics
Composition vector method
Computational Biology - methods
Computational modeling
Computer Simulation
Databases, Genetic
Entropy
Estimation
Humans
Markov Chains
maximum entropy principle
Models, Genetic
Optimization
optimization model
phylogenetics
Phylogeny
Sequence Analysis, DNA - methods
Strain
Studies
title Composition Vector Method Based on Maximum Entropy Principle for Sequence Comparison
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20Vector%20Method%20Based%20on%20Maximum%20Entropy%20Principle%20for%20Sequence%20Comparison&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Chan,%20R.%20H.&rft.date=2012-01&rft.volume=9&rft.issue=1&rft.spage=79&rft.epage=87&rft.pages=79-87&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2011.45&rft_dat=%3Cproquest_RIE%3E2525162811%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907258254&rft_id=info:pmid/21383416&rft_ieee_id=5728790&rfr_iscdi=true