The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry

Paraffinic crude oils in pipelines may form waxy gels during flow shutdowns. These gels can be dislodged by applying pressure if the wall shear stress, proportional to the local pressure gradient, exceeds the gel yield stress. The simplest models assume that the axial pressure profile becomes linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2012-01, Vol.58 (1), p.302-311
Hauptverfasser: El-Gendy, Husam, Alcoutlabi, Mataz, Jemmett, Mark, Deo, Milind, Magda, Jules, Venkatesan, Rama, Montesi, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 1
container_start_page 302
container_title AIChE journal
container_volume 58
creator El-Gendy, Husam
Alcoutlabi, Mataz
Jemmett, Mark
Deo, Milind
Magda, Jules
Venkatesan, Rama
Montesi, Alberto
description Paraffinic crude oils in pipelines may form waxy gels during flow shutdowns. These gels can be dislodged by applying pressure if the wall shear stress, proportional to the local pressure gradient, exceeds the gel yield stress. The simplest models assume that the axial pressure profile becomes linear immediately after a jump in upstream pressure, but this fails to account for gel time‐dependent rheology or the effect of gel voids on pressure wave propagation. To investigate the former factor, pressure profile and particle imaging velocimetry (PIV) measurements were performed on a model oil gelled under pressure to reduce void formation. After a jump in upstream pressure to a value insufficient to restart flow, the axial pressure profile becomes linear in a two‐step process, with an immediate small rise in downstream pressure followed by a time‐delayed jump. The local downstream gel deformation measured by PIV exhibits similar two‐step time dependence. © 2011 American Institute of Chemical Engineers AIChE J, 2012
doi_str_mv 10.1002/aic.12560
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920805463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536393031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4660-d065084061e924d2f6121c265d5415bc0b29b7d3fefd9a2b1af1cc4c2c8d6ab93</originalsourceid><addsrcrecordid>eNp9kUFv1DAQha2qSF0Kh_4DCwkBh7RjJ7bjY7WCpWgFEhQh9WI5trN1602CndDm3-NlSw9I9GSN_b03M34InRA4JQD0THtzSijjcIAWhFWiYBLYIVoAACnyBTlCz1O6yRUVNV0ge3nt8BD7QW_06PsO920uXUpTdNh3WOONC8FZfKfvZ9z7gAc_uOA7h3XCaZysz4_NjAcdR29CFm31xncb_MuF3vitG-P8Aj1rdUju5cN5jL5_eH-5_Fisv6wulufrwlScQ2GBM6gr4MRJWlnackKJoZzZPDdrDDRUNsKWrWut1LQhuiXGVIaa2nLdyPIYvdn75oV-Ti6NauuTyfPrzvVTUpJCDaziZSbfPkkSLkhVU8F4Rl_9g970U-zyHkoSEFISsuv8bg-Z2KcUXauGmD8izoqA2gWjcjDqTzCZff1gqJPRoY26Mz49CjIjBa92nmd77s4HN__fUJ1fLP86F3uFT6O7f1ToeKu4KAVTPz6v1NUnufq6_rZSsvwNGCeq2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>910799119</pqid></control><display><type>article</type><title>The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>El-Gendy, Husam ; Alcoutlabi, Mataz ; Jemmett, Mark ; Deo, Milind ; Magda, Jules ; Venkatesan, Rama ; Montesi, Alberto</creator><creatorcontrib>El-Gendy, Husam ; Alcoutlabi, Mataz ; Jemmett, Mark ; Deo, Milind ; Magda, Jules ; Venkatesan, Rama ; Montesi, Alberto</creatorcontrib><description>Paraffinic crude oils in pipelines may form waxy gels during flow shutdowns. These gels can be dislodged by applying pressure if the wall shear stress, proportional to the local pressure gradient, exceeds the gel yield stress. The simplest models assume that the axial pressure profile becomes linear immediately after a jump in upstream pressure, but this fails to account for gel time‐dependent rheology or the effect of gel voids on pressure wave propagation. To investigate the former factor, pressure profile and particle imaging velocimetry (PIV) measurements were performed on a model oil gelled under pressure to reduce void formation. After a jump in upstream pressure to a value insufficient to restart flow, the axial pressure profile becomes linear in a two‐step process, with an immediate small rise in downstream pressure followed by a time‐delayed jump. The local downstream gel deformation measured by PIV exhibits similar two‐step time dependence. © 2011 American Institute of Chemical Engineers AIChE J, 2012</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.12560</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical engineering ; Crude oil ; energy ; Exact sciences and technology ; Gels ; Imaging ; Measurement ; petroleum ; Petroleum pipelines ; PIV ; Pressure ; Rheology ; Shear stress ; Upstream ; Velocimetry ; Velocity measurement ; Voids ; Wave propagation</subject><ispartof>AIChE journal, 2012-01, Vol.58 (1), p.302-311</ispartof><rights>Copyright © 2011 American Institute of Chemical Engineers (AIChE)</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4660-d065084061e924d2f6121c265d5415bc0b29b7d3fefd9a2b1af1cc4c2c8d6ab93</citedby><cites>FETCH-LOGICAL-c4660-d065084061e924d2f6121c265d5415bc0b29b7d3fefd9a2b1af1cc4c2c8d6ab93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.12560$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.12560$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,4012,27906,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25697649$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>El-Gendy, Husam</creatorcontrib><creatorcontrib>Alcoutlabi, Mataz</creatorcontrib><creatorcontrib>Jemmett, Mark</creatorcontrib><creatorcontrib>Deo, Milind</creatorcontrib><creatorcontrib>Magda, Jules</creatorcontrib><creatorcontrib>Venkatesan, Rama</creatorcontrib><creatorcontrib>Montesi, Alberto</creatorcontrib><title>The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Paraffinic crude oils in pipelines may form waxy gels during flow shutdowns. These gels can be dislodged by applying pressure if the wall shear stress, proportional to the local pressure gradient, exceeds the gel yield stress. The simplest models assume that the axial pressure profile becomes linear immediately after a jump in upstream pressure, but this fails to account for gel time‐dependent rheology or the effect of gel voids on pressure wave propagation. To investigate the former factor, pressure profile and particle imaging velocimetry (PIV) measurements were performed on a model oil gelled under pressure to reduce void formation. After a jump in upstream pressure to a value insufficient to restart flow, the axial pressure profile becomes linear in a two‐step process, with an immediate small rise in downstream pressure followed by a time‐delayed jump. The local downstream gel deformation measured by PIV exhibits similar two‐step time dependence. © 2011 American Institute of Chemical Engineers AIChE J, 2012</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Crude oil</subject><subject>energy</subject><subject>Exact sciences and technology</subject><subject>Gels</subject><subject>Imaging</subject><subject>Measurement</subject><subject>petroleum</subject><subject>Petroleum pipelines</subject><subject>PIV</subject><subject>Pressure</subject><subject>Rheology</subject><subject>Shear stress</subject><subject>Upstream</subject><subject>Velocimetry</subject><subject>Velocity measurement</subject><subject>Voids</subject><subject>Wave propagation</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQha2qSF0Kh_4DCwkBh7RjJ7bjY7WCpWgFEhQh9WI5trN1602CndDm3-NlSw9I9GSN_b03M34InRA4JQD0THtzSijjcIAWhFWiYBLYIVoAACnyBTlCz1O6yRUVNV0ge3nt8BD7QW_06PsO920uXUpTdNh3WOONC8FZfKfvZ9z7gAc_uOA7h3XCaZysz4_NjAcdR29CFm31xncb_MuF3vitG-P8Aj1rdUju5cN5jL5_eH-5_Fisv6wulufrwlScQ2GBM6gr4MRJWlnackKJoZzZPDdrDDRUNsKWrWut1LQhuiXGVIaa2nLdyPIYvdn75oV-Ti6NauuTyfPrzvVTUpJCDaziZSbfPkkSLkhVU8F4Rl_9g970U-zyHkoSEFISsuv8bg-Z2KcUXauGmD8izoqA2gWjcjDqTzCZff1gqJPRoY26Mz49CjIjBa92nmd77s4HN__fUJ1fLP86F3uFT6O7f1ToeKu4KAVTPz6v1NUnufq6_rZSsvwNGCeq2g</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>El-Gendy, Husam</creator><creator>Alcoutlabi, Mataz</creator><creator>Jemmett, Mark</creator><creator>Deo, Milind</creator><creator>Magda, Jules</creator><creator>Venkatesan, Rama</creator><creator>Montesi, Alberto</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7SU</scope><scope>FR3</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>201201</creationdate><title>The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry</title><author>El-Gendy, Husam ; Alcoutlabi, Mataz ; Jemmett, Mark ; Deo, Milind ; Magda, Jules ; Venkatesan, Rama ; Montesi, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4660-d065084061e924d2f6121c265d5415bc0b29b7d3fefd9a2b1af1cc4c2c8d6ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Crude oil</topic><topic>energy</topic><topic>Exact sciences and technology</topic><topic>Gels</topic><topic>Imaging</topic><topic>Measurement</topic><topic>petroleum</topic><topic>Petroleum pipelines</topic><topic>PIV</topic><topic>Pressure</topic><topic>Rheology</topic><topic>Shear stress</topic><topic>Upstream</topic><topic>Velocimetry</topic><topic>Velocity measurement</topic><topic>Voids</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Gendy, Husam</creatorcontrib><creatorcontrib>Alcoutlabi, Mataz</creatorcontrib><creatorcontrib>Jemmett, Mark</creatorcontrib><creatorcontrib>Deo, Milind</creatorcontrib><creatorcontrib>Magda, Jules</creatorcontrib><creatorcontrib>Venkatesan, Rama</creatorcontrib><creatorcontrib>Montesi, Alberto</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Gendy, Husam</au><au>Alcoutlabi, Mataz</au><au>Jemmett, Mark</au><au>Deo, Milind</au><au>Magda, Jules</au><au>Venkatesan, Rama</au><au>Montesi, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2012-01</date><risdate>2012</risdate><volume>58</volume><issue>1</issue><spage>302</spage><epage>311</epage><pages>302-311</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Paraffinic crude oils in pipelines may form waxy gels during flow shutdowns. These gels can be dislodged by applying pressure if the wall shear stress, proportional to the local pressure gradient, exceeds the gel yield stress. The simplest models assume that the axial pressure profile becomes linear immediately after a jump in upstream pressure, but this fails to account for gel time‐dependent rheology or the effect of gel voids on pressure wave propagation. To investigate the former factor, pressure profile and particle imaging velocimetry (PIV) measurements were performed on a model oil gelled under pressure to reduce void formation. After a jump in upstream pressure to a value insufficient to restart flow, the axial pressure profile becomes linear in a two‐step process, with an immediate small rise in downstream pressure followed by a time‐delayed jump. The local downstream gel deformation measured by PIV exhibits similar two‐step time dependence. © 2011 American Institute of Chemical Engineers AIChE J, 2012</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.12560</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2012-01, Vol.58 (1), p.302-311
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_920805463
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Chemical engineering
Crude oil
energy
Exact sciences and technology
Gels
Imaging
Measurement
petroleum
Petroleum pipelines
PIV
Pressure
Rheology
Shear stress
Upstream
Velocimetry
Velocity measurement
Voids
Wave propagation
title The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20propagation%20of%20pressure%20in%20a%20gelled%20waxy%20oil%20pipeline%20as%20studied%20by%20particle%20imaging%20velocimetry&rft.jtitle=AIChE%20journal&rft.au=El-Gendy,%20Husam&rft.date=2012-01&rft.volume=58&rft.issue=1&rft.spage=302&rft.epage=311&rft.pages=302-311&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.12560&rft_dat=%3Cproquest_cross%3E2536393031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=910799119&rft_id=info:pmid/&rfr_iscdi=true