The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry
Paraffinic crude oils in pipelines may form waxy gels during flow shutdowns. These gels can be dislodged by applying pressure if the wall shear stress, proportional to the local pressure gradient, exceeds the gel yield stress. The simplest models assume that the axial pressure profile becomes linear...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2012-01, Vol.58 (1), p.302-311 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 311 |
---|---|
container_issue | 1 |
container_start_page | 302 |
container_title | AIChE journal |
container_volume | 58 |
creator | El-Gendy, Husam Alcoutlabi, Mataz Jemmett, Mark Deo, Milind Magda, Jules Venkatesan, Rama Montesi, Alberto |
description | Paraffinic crude oils in pipelines may form waxy gels during flow shutdowns. These gels can be dislodged by applying pressure if the wall shear stress, proportional to the local pressure gradient, exceeds the gel yield stress. The simplest models assume that the axial pressure profile becomes linear immediately after a jump in upstream pressure, but this fails to account for gel time‐dependent rheology or the effect of gel voids on pressure wave propagation. To investigate the former factor, pressure profile and particle imaging velocimetry (PIV) measurements were performed on a model oil gelled under pressure to reduce void formation. After a jump in upstream pressure to a value insufficient to restart flow, the axial pressure profile becomes linear in a two‐step process, with an immediate small rise in downstream pressure followed by a time‐delayed jump. The local downstream gel deformation measured by PIV exhibits similar two‐step time dependence. © 2011 American Institute of Chemical Engineers AIChE J, 2012 |
doi_str_mv | 10.1002/aic.12560 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920805463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2536393031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4660-d065084061e924d2f6121c265d5415bc0b29b7d3fefd9a2b1af1cc4c2c8d6ab93</originalsourceid><addsrcrecordid>eNp9kUFv1DAQha2qSF0Kh_4DCwkBh7RjJ7bjY7WCpWgFEhQh9WI5trN1602CndDm3-NlSw9I9GSN_b03M34InRA4JQD0THtzSijjcIAWhFWiYBLYIVoAACnyBTlCz1O6yRUVNV0ge3nt8BD7QW_06PsO920uXUpTdNh3WOONC8FZfKfvZ9z7gAc_uOA7h3XCaZysz4_NjAcdR29CFm31xncb_MuF3vitG-P8Aj1rdUju5cN5jL5_eH-5_Fisv6wulufrwlScQ2GBM6gr4MRJWlnackKJoZzZPDdrDDRUNsKWrWut1LQhuiXGVIaa2nLdyPIYvdn75oV-Ti6NauuTyfPrzvVTUpJCDaziZSbfPkkSLkhVU8F4Rl_9g970U-zyHkoSEFISsuv8bg-Z2KcUXauGmD8izoqA2gWjcjDqTzCZff1gqJPRoY26Mz49CjIjBa92nmd77s4HN__fUJ1fLP86F3uFT6O7f1ToeKu4KAVTPz6v1NUnufq6_rZSsvwNGCeq2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>910799119</pqid></control><display><type>article</type><title>The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>El-Gendy, Husam ; Alcoutlabi, Mataz ; Jemmett, Mark ; Deo, Milind ; Magda, Jules ; Venkatesan, Rama ; Montesi, Alberto</creator><creatorcontrib>El-Gendy, Husam ; Alcoutlabi, Mataz ; Jemmett, Mark ; Deo, Milind ; Magda, Jules ; Venkatesan, Rama ; Montesi, Alberto</creatorcontrib><description>Paraffinic crude oils in pipelines may form waxy gels during flow shutdowns. These gels can be dislodged by applying pressure if the wall shear stress, proportional to the local pressure gradient, exceeds the gel yield stress. The simplest models assume that the axial pressure profile becomes linear immediately after a jump in upstream pressure, but this fails to account for gel time‐dependent rheology or the effect of gel voids on pressure wave propagation. To investigate the former factor, pressure profile and particle imaging velocimetry (PIV) measurements were performed on a model oil gelled under pressure to reduce void formation. After a jump in upstream pressure to a value insufficient to restart flow, the axial pressure profile becomes linear in a two‐step process, with an immediate small rise in downstream pressure followed by a time‐delayed jump. The local downstream gel deformation measured by PIV exhibits similar two‐step time dependence. © 2011 American Institute of Chemical Engineers AIChE J, 2012</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.12560</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical engineering ; Crude oil ; energy ; Exact sciences and technology ; Gels ; Imaging ; Measurement ; petroleum ; Petroleum pipelines ; PIV ; Pressure ; Rheology ; Shear stress ; Upstream ; Velocimetry ; Velocity measurement ; Voids ; Wave propagation</subject><ispartof>AIChE journal, 2012-01, Vol.58 (1), p.302-311</ispartof><rights>Copyright © 2011 American Institute of Chemical Engineers (AIChE)</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4660-d065084061e924d2f6121c265d5415bc0b29b7d3fefd9a2b1af1cc4c2c8d6ab93</citedby><cites>FETCH-LOGICAL-c4660-d065084061e924d2f6121c265d5415bc0b29b7d3fefd9a2b1af1cc4c2c8d6ab93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.12560$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.12560$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,4012,27906,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25697649$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>El-Gendy, Husam</creatorcontrib><creatorcontrib>Alcoutlabi, Mataz</creatorcontrib><creatorcontrib>Jemmett, Mark</creatorcontrib><creatorcontrib>Deo, Milind</creatorcontrib><creatorcontrib>Magda, Jules</creatorcontrib><creatorcontrib>Venkatesan, Rama</creatorcontrib><creatorcontrib>Montesi, Alberto</creatorcontrib><title>The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Paraffinic crude oils in pipelines may form waxy gels during flow shutdowns. These gels can be dislodged by applying pressure if the wall shear stress, proportional to the local pressure gradient, exceeds the gel yield stress. The simplest models assume that the axial pressure profile becomes linear immediately after a jump in upstream pressure, but this fails to account for gel time‐dependent rheology or the effect of gel voids on pressure wave propagation. To investigate the former factor, pressure profile and particle imaging velocimetry (PIV) measurements were performed on a model oil gelled under pressure to reduce void formation. After a jump in upstream pressure to a value insufficient to restart flow, the axial pressure profile becomes linear in a two‐step process, with an immediate small rise in downstream pressure followed by a time‐delayed jump. The local downstream gel deformation measured by PIV exhibits similar two‐step time dependence. © 2011 American Institute of Chemical Engineers AIChE J, 2012</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Crude oil</subject><subject>energy</subject><subject>Exact sciences and technology</subject><subject>Gels</subject><subject>Imaging</subject><subject>Measurement</subject><subject>petroleum</subject><subject>Petroleum pipelines</subject><subject>PIV</subject><subject>Pressure</subject><subject>Rheology</subject><subject>Shear stress</subject><subject>Upstream</subject><subject>Velocimetry</subject><subject>Velocity measurement</subject><subject>Voids</subject><subject>Wave propagation</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQha2qSF0Kh_4DCwkBh7RjJ7bjY7WCpWgFEhQh9WI5trN1602CndDm3-NlSw9I9GSN_b03M34InRA4JQD0THtzSijjcIAWhFWiYBLYIVoAACnyBTlCz1O6yRUVNV0ge3nt8BD7QW_06PsO920uXUpTdNh3WOONC8FZfKfvZ9z7gAc_uOA7h3XCaZysz4_NjAcdR29CFm31xncb_MuF3vitG-P8Aj1rdUju5cN5jL5_eH-5_Fisv6wulufrwlScQ2GBM6gr4MRJWlnackKJoZzZPDdrDDRUNsKWrWut1LQhuiXGVIaa2nLdyPIYvdn75oV-Ti6NauuTyfPrzvVTUpJCDaziZSbfPkkSLkhVU8F4Rl_9g970U-zyHkoSEFISsuv8bg-Z2KcUXauGmD8izoqA2gWjcjDqTzCZff1gqJPRoY26Mz49CjIjBa92nmd77s4HN__fUJ1fLP86F3uFT6O7f1ToeKu4KAVTPz6v1NUnufq6_rZSsvwNGCeq2g</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>El-Gendy, Husam</creator><creator>Alcoutlabi, Mataz</creator><creator>Jemmett, Mark</creator><creator>Deo, Milind</creator><creator>Magda, Jules</creator><creator>Venkatesan, Rama</creator><creator>Montesi, Alberto</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7SU</scope><scope>FR3</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>201201</creationdate><title>The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry</title><author>El-Gendy, Husam ; Alcoutlabi, Mataz ; Jemmett, Mark ; Deo, Milind ; Magda, Jules ; Venkatesan, Rama ; Montesi, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4660-d065084061e924d2f6121c265d5415bc0b29b7d3fefd9a2b1af1cc4c2c8d6ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Crude oil</topic><topic>energy</topic><topic>Exact sciences and technology</topic><topic>Gels</topic><topic>Imaging</topic><topic>Measurement</topic><topic>petroleum</topic><topic>Petroleum pipelines</topic><topic>PIV</topic><topic>Pressure</topic><topic>Rheology</topic><topic>Shear stress</topic><topic>Upstream</topic><topic>Velocimetry</topic><topic>Velocity measurement</topic><topic>Voids</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El-Gendy, Husam</creatorcontrib><creatorcontrib>Alcoutlabi, Mataz</creatorcontrib><creatorcontrib>Jemmett, Mark</creatorcontrib><creatorcontrib>Deo, Milind</creatorcontrib><creatorcontrib>Magda, Jules</creatorcontrib><creatorcontrib>Venkatesan, Rama</creatorcontrib><creatorcontrib>Montesi, Alberto</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El-Gendy, Husam</au><au>Alcoutlabi, Mataz</au><au>Jemmett, Mark</au><au>Deo, Milind</au><au>Magda, Jules</au><au>Venkatesan, Rama</au><au>Montesi, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2012-01</date><risdate>2012</risdate><volume>58</volume><issue>1</issue><spage>302</spage><epage>311</epage><pages>302-311</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Paraffinic crude oils in pipelines may form waxy gels during flow shutdowns. These gels can be dislodged by applying pressure if the wall shear stress, proportional to the local pressure gradient, exceeds the gel yield stress. The simplest models assume that the axial pressure profile becomes linear immediately after a jump in upstream pressure, but this fails to account for gel time‐dependent rheology or the effect of gel voids on pressure wave propagation. To investigate the former factor, pressure profile and particle imaging velocimetry (PIV) measurements were performed on a model oil gelled under pressure to reduce void formation. After a jump in upstream pressure to a value insufficient to restart flow, the axial pressure profile becomes linear in a two‐step process, with an immediate small rise in downstream pressure followed by a time‐delayed jump. The local downstream gel deformation measured by PIV exhibits similar two‐step time dependence. © 2011 American Institute of Chemical Engineers AIChE J, 2012</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.12560</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2012-01, Vol.58 (1), p.302-311 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_920805463 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Chemical engineering Crude oil energy Exact sciences and technology Gels Imaging Measurement petroleum Petroleum pipelines PIV Pressure Rheology Shear stress Upstream Velocimetry Velocity measurement Voids Wave propagation |
title | The propagation of pressure in a gelled waxy oil pipeline as studied by particle imaging velocimetry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20propagation%20of%20pressure%20in%20a%20gelled%20waxy%20oil%20pipeline%20as%20studied%20by%20particle%20imaging%20velocimetry&rft.jtitle=AIChE%20journal&rft.au=El-Gendy,%20Husam&rft.date=2012-01&rft.volume=58&rft.issue=1&rft.spage=302&rft.epage=311&rft.pages=302-311&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.12560&rft_dat=%3Cproquest_cross%3E2536393031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=910799119&rft_id=info:pmid/&rfr_iscdi=true |