A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution
Lime neutralization and coprecipitation of arsenate with iron is widely practiced for the removal and immobilization of arsenic from mineral processing effluents. However, the stability of the generated iron-arsenate coprecipitate is still of concern. In this work, we developed a two-step coprecipit...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2012-02, Vol.46 (2), p.500-508 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 508 |
---|---|
container_issue | 2 |
container_start_page | 500 |
container_title | Water research (Oxford) |
container_volume | 46 |
creator | Jia, Yongfeng Zhang, Danni Pan, Rongrong Xu, Liying Demopoulos, George P. |
description | Lime neutralization and coprecipitation of arsenate with iron is widely practiced for the removal and immobilization of arsenic from mineral processing effluents. However, the stability of the generated iron-arsenate coprecipitate is still of concern. In this work, we developed a two-step coprecipitation process involving the use of iron and aluminum and tested the stability of the resultant coprecipitates. The two-step Fe–As–Fe or Fe–As–Al coprecipitation process involved an initial Fe/As = 2 coprecipitation at pH4 to remove arsenic from water down to 0.25 mg/L, followed by introduction of iron or aluminum (Fe/As = 2, Al/As = 1.5 or 2). The two-step coprecipitates showed higher stability than traditional Fe/As = 4 coprecipitate under both oxic and anoxic conditions. Leaching stability was enhanced when aluminum was applied in the second step. The use of aluminum in the second step also inhibited microbial mediated arsenate reduction and arsenic remobilization. The results suggest that the two-step coprecipitation process is superior to conventional coprecipitation methods with respect to the stability of the generated arsenic-bearing solid waste. The use of Al in the second step is better than Fe to enhance the stability. This work may have important implications to the development of new technologies for efficient arsenic removal from hydrometallurgical solutions and safe disposal in both oxic and anoxic environment.
[Display omitted]
► A new coprecipitation process for arsenic removal/immobilization from water was developed. ► This process involves an arsenic removal step and a stability improvement step. ► Arsenic can be removed to sub-ppm level and the solid shows considerably high stability. |
doi_str_mv | 10.1016/j.watres.2011.11.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920805172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135411007378</els_id><sourcerecordid>920805172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-a06a9b46751842f247c2b186ff052d1452a1f33dd9399006b5b631cef22ea7693</originalsourceid><addsrcrecordid>eNqFkd2K1DAUgIMo7rj6BiK5EdeLjkmaNM2NMCyuDix4o9chTU80Q9vUJJ1FH8JnNmNHvVvhQAL5zk_Oh9BzSraU0ObNYXtncoS0ZYTSbQnCxQO0oa1UFeO8fYg2hPC6orXgF-hJSgdCCGO1eowuGKOcCaU26OcOT-EIA853oUoZZmzDHMH62WeTfZjwHIOFlPCS_PQF38DVfr9_jc3U492w3l2IOH8FHGEMRzP8fvPjGDo_-B9rkeCwiQkmkwG7GEZsrO-9xebbAmFJOIVhOYFP0SNnhgTPzucl-nzz7tP1h-r24_v99e62soKxXBnSGNXxRgracuYYl5Z1tG2cI4L1lAtmqKvrvle1UoQ0neiamlpwjIGRjaov0au1bvldGSFlPfpkYRjMdJpHK0ZaIqhk_ycpk0oSygt5dS9JpZSUt2XzBeUramNIKYLTc_Sjid81JfpkVx_0alef7OoSxW5Je3HusHQj9H-T_ugswMszYJI1g4tmsj7940SthCRN4d6uHJQdHz1EnayHyULvi_us--Dvn-QXlLPEVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777148142</pqid></control><display><type>article</type><title>A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Jia, Yongfeng ; Zhang, Danni ; Pan, Rongrong ; Xu, Liying ; Demopoulos, George P.</creator><creatorcontrib>Jia, Yongfeng ; Zhang, Danni ; Pan, Rongrong ; Xu, Liying ; Demopoulos, George P.</creatorcontrib><description>Lime neutralization and coprecipitation of arsenate with iron is widely practiced for the removal and immobilization of arsenic from mineral processing effluents. However, the stability of the generated iron-arsenate coprecipitate is still of concern. In this work, we developed a two-step coprecipitation process involving the use of iron and aluminum and tested the stability of the resultant coprecipitates. The two-step Fe–As–Fe or Fe–As–Al coprecipitation process involved an initial Fe/As = 2 coprecipitation at pH4 to remove arsenic from water down to 0.25 mg/L, followed by introduction of iron or aluminum (Fe/As = 2, Al/As = 1.5 or 2). The two-step coprecipitates showed higher stability than traditional Fe/As = 4 coprecipitate under both oxic and anoxic conditions. Leaching stability was enhanced when aluminum was applied in the second step. The use of aluminum in the second step also inhibited microbial mediated arsenate reduction and arsenic remobilization. The results suggest that the two-step coprecipitation process is superior to conventional coprecipitation methods with respect to the stability of the generated arsenic-bearing solid waste. The use of Al in the second step is better than Fe to enhance the stability. This work may have important implications to the development of new technologies for efficient arsenic removal from hydrometallurgical solutions and safe disposal in both oxic and anoxic environment.
[Display omitted]
► A new coprecipitation process for arsenic removal/immobilization from water was developed. ► This process involves an arsenic removal step and a stability improvement step. ► Arsenic can be removed to sub-ppm level and the solid shows considerably high stability.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2011.11.045</identifier><identifier>PMID: 22142599</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminum ; Aluminum - chemistry ; Aluminum Compounds - chemistry ; Aluminum Hydroxide - chemistry ; Applied sciences ; Arsenate ; Arsenates ; Arsenates - chemistry ; Arsenic ; Arsenic - analysis ; Arsenic - chemistry ; Chemical Precipitation ; Coprecipitation ; Exact sciences and technology ; Ferric Compounds - chemistry ; Hydrogen-Ion Concentration ; Immobilization ; Iron ; Iron - chemistry ; Kinetics ; Microorganisms ; Pollution ; Removal ; Spectrometry, Fluorescence ; Stability ; Two-step ; Waste Disposal, Fluid - methods ; Water Pollutants, Chemical - analysis ; Water Pollutants, Chemical - chemistry ; Water Purification - methods ; Water treatment and pollution ; X-Ray Absorption Spectroscopy</subject><ispartof>Water research (Oxford), 2012-02, Vol.46 (2), p.500-508</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-a06a9b46751842f247c2b186ff052d1452a1f33dd9399006b5b631cef22ea7693</citedby><cites>FETCH-LOGICAL-c522t-a06a9b46751842f247c2b186ff052d1452a1f33dd9399006b5b631cef22ea7693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043135411007378$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25395706$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22142599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Yongfeng</creatorcontrib><creatorcontrib>Zhang, Danni</creatorcontrib><creatorcontrib>Pan, Rongrong</creatorcontrib><creatorcontrib>Xu, Liying</creatorcontrib><creatorcontrib>Demopoulos, George P.</creatorcontrib><title>A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Lime neutralization and coprecipitation of arsenate with iron is widely practiced for the removal and immobilization of arsenic from mineral processing effluents. However, the stability of the generated iron-arsenate coprecipitate is still of concern. In this work, we developed a two-step coprecipitation process involving the use of iron and aluminum and tested the stability of the resultant coprecipitates. The two-step Fe–As–Fe or Fe–As–Al coprecipitation process involved an initial Fe/As = 2 coprecipitation at pH4 to remove arsenic from water down to 0.25 mg/L, followed by introduction of iron or aluminum (Fe/As = 2, Al/As = 1.5 or 2). The two-step coprecipitates showed higher stability than traditional Fe/As = 4 coprecipitate under both oxic and anoxic conditions. Leaching stability was enhanced when aluminum was applied in the second step. The use of aluminum in the second step also inhibited microbial mediated arsenate reduction and arsenic remobilization. The results suggest that the two-step coprecipitation process is superior to conventional coprecipitation methods with respect to the stability of the generated arsenic-bearing solid waste. The use of Al in the second step is better than Fe to enhance the stability. This work may have important implications to the development of new technologies for efficient arsenic removal from hydrometallurgical solutions and safe disposal in both oxic and anoxic environment.
[Display omitted]
► A new coprecipitation process for arsenic removal/immobilization from water was developed. ► This process involves an arsenic removal step and a stability improvement step. ► Arsenic can be removed to sub-ppm level and the solid shows considerably high stability.</description><subject>Aluminum</subject><subject>Aluminum - chemistry</subject><subject>Aluminum Compounds - chemistry</subject><subject>Aluminum Hydroxide - chemistry</subject><subject>Applied sciences</subject><subject>Arsenate</subject><subject>Arsenates</subject><subject>Arsenates - chemistry</subject><subject>Arsenic</subject><subject>Arsenic - analysis</subject><subject>Arsenic - chemistry</subject><subject>Chemical Precipitation</subject><subject>Coprecipitation</subject><subject>Exact sciences and technology</subject><subject>Ferric Compounds - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Immobilization</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Kinetics</subject><subject>Microorganisms</subject><subject>Pollution</subject><subject>Removal</subject><subject>Spectrometry, Fluorescence</subject><subject>Stability</subject><subject>Two-step</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Purification - methods</subject><subject>Water treatment and pollution</subject><subject>X-Ray Absorption Spectroscopy</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd2K1DAUgIMo7rj6BiK5EdeLjkmaNM2NMCyuDix4o9chTU80Q9vUJJ1FH8JnNmNHvVvhQAL5zk_Oh9BzSraU0ObNYXtncoS0ZYTSbQnCxQO0oa1UFeO8fYg2hPC6orXgF-hJSgdCCGO1eowuGKOcCaU26OcOT-EIA853oUoZZmzDHMH62WeTfZjwHIOFlPCS_PQF38DVfr9_jc3U492w3l2IOH8FHGEMRzP8fvPjGDo_-B9rkeCwiQkmkwG7GEZsrO-9xebbAmFJOIVhOYFP0SNnhgTPzucl-nzz7tP1h-r24_v99e62soKxXBnSGNXxRgracuYYl5Z1tG2cI4L1lAtmqKvrvle1UoQ0neiamlpwjIGRjaov0au1bvldGSFlPfpkYRjMdJpHK0ZaIqhk_ycpk0oSygt5dS9JpZSUt2XzBeUramNIKYLTc_Sjid81JfpkVx_0alef7OoSxW5Je3HusHQj9H-T_ugswMszYJI1g4tmsj7940SthCRN4d6uHJQdHz1EnayHyULvi_us--Dvn-QXlLPEVw</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Jia, Yongfeng</creator><creator>Zhang, Danni</creator><creator>Pan, Rongrong</creator><creator>Xu, Liying</creator><creator>Demopoulos, George P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20120201</creationdate><title>A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution</title><author>Jia, Yongfeng ; Zhang, Danni ; Pan, Rongrong ; Xu, Liying ; Demopoulos, George P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-a06a9b46751842f247c2b186ff052d1452a1f33dd9399006b5b631cef22ea7693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aluminum</topic><topic>Aluminum - chemistry</topic><topic>Aluminum Compounds - chemistry</topic><topic>Aluminum Hydroxide - chemistry</topic><topic>Applied sciences</topic><topic>Arsenate</topic><topic>Arsenates</topic><topic>Arsenates - chemistry</topic><topic>Arsenic</topic><topic>Arsenic - analysis</topic><topic>Arsenic - chemistry</topic><topic>Chemical Precipitation</topic><topic>Coprecipitation</topic><topic>Exact sciences and technology</topic><topic>Ferric Compounds - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Immobilization</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Kinetics</topic><topic>Microorganisms</topic><topic>Pollution</topic><topic>Removal</topic><topic>Spectrometry, Fluorescence</topic><topic>Stability</topic><topic>Two-step</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Purification - methods</topic><topic>Water treatment and pollution</topic><topic>X-Ray Absorption Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Yongfeng</creatorcontrib><creatorcontrib>Zhang, Danni</creatorcontrib><creatorcontrib>Pan, Rongrong</creatorcontrib><creatorcontrib>Xu, Liying</creatorcontrib><creatorcontrib>Demopoulos, George P.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Yongfeng</au><au>Zhang, Danni</au><au>Pan, Rongrong</au><au>Xu, Liying</au><au>Demopoulos, George P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>46</volume><issue>2</issue><spage>500</spage><epage>508</epage><pages>500-508</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>Lime neutralization and coprecipitation of arsenate with iron is widely practiced for the removal and immobilization of arsenic from mineral processing effluents. However, the stability of the generated iron-arsenate coprecipitate is still of concern. In this work, we developed a two-step coprecipitation process involving the use of iron and aluminum and tested the stability of the resultant coprecipitates. The two-step Fe–As–Fe or Fe–As–Al coprecipitation process involved an initial Fe/As = 2 coprecipitation at pH4 to remove arsenic from water down to 0.25 mg/L, followed by introduction of iron or aluminum (Fe/As = 2, Al/As = 1.5 or 2). The two-step coprecipitates showed higher stability than traditional Fe/As = 4 coprecipitate under both oxic and anoxic conditions. Leaching stability was enhanced when aluminum was applied in the second step. The use of aluminum in the second step also inhibited microbial mediated arsenate reduction and arsenic remobilization. The results suggest that the two-step coprecipitation process is superior to conventional coprecipitation methods with respect to the stability of the generated arsenic-bearing solid waste. The use of Al in the second step is better than Fe to enhance the stability. This work may have important implications to the development of new technologies for efficient arsenic removal from hydrometallurgical solutions and safe disposal in both oxic and anoxic environment.
[Display omitted]
► A new coprecipitation process for arsenic removal/immobilization from water was developed. ► This process involves an arsenic removal step and a stability improvement step. ► Arsenic can be removed to sub-ppm level and the solid shows considerably high stability.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22142599</pmid><doi>10.1016/j.watres.2011.11.045</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1354 |
ispartof | Water research (Oxford), 2012-02, Vol.46 (2), p.500-508 |
issn | 0043-1354 1879-2448 |
language | eng |
recordid | cdi_proquest_miscellaneous_920805172 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Aluminum Aluminum - chemistry Aluminum Compounds - chemistry Aluminum Hydroxide - chemistry Applied sciences Arsenate Arsenates Arsenates - chemistry Arsenic Arsenic - analysis Arsenic - chemistry Chemical Precipitation Coprecipitation Exact sciences and technology Ferric Compounds - chemistry Hydrogen-Ion Concentration Immobilization Iron Iron - chemistry Kinetics Microorganisms Pollution Removal Spectrometry, Fluorescence Stability Two-step Waste Disposal, Fluid - methods Water Pollutants, Chemical - analysis Water Pollutants, Chemical - chemistry Water Purification - methods Water treatment and pollution X-Ray Absorption Spectroscopy |
title | A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20two-step%20coprecipitation%20process%20using%20Fe(III)%20and%20Al(III)%20for%20the%20removal%20and%20immobilization%20of%20arsenate%20from%20acidic%20aqueous%20solution&rft.jtitle=Water%20research%20(Oxford)&rft.au=Jia,%20Yongfeng&rft.date=2012-02-01&rft.volume=46&rft.issue=2&rft.spage=500&rft.epage=508&rft.pages=500-508&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2011.11.045&rft_dat=%3Cproquest_cross%3E920805172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777148142&rft_id=info:pmid/22142599&rft_els_id=S0043135411007378&rfr_iscdi=true |