A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution

Lime neutralization and coprecipitation of arsenate with iron is widely practiced for the removal and immobilization of arsenic from mineral processing effluents. However, the stability of the generated iron-arsenate coprecipitate is still of concern. In this work, we developed a two-step coprecipit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2012-02, Vol.46 (2), p.500-508
Hauptverfasser: Jia, Yongfeng, Zhang, Danni, Pan, Rongrong, Xu, Liying, Demopoulos, George P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 508
container_issue 2
container_start_page 500
container_title Water research (Oxford)
container_volume 46
creator Jia, Yongfeng
Zhang, Danni
Pan, Rongrong
Xu, Liying
Demopoulos, George P.
description Lime neutralization and coprecipitation of arsenate with iron is widely practiced for the removal and immobilization of arsenic from mineral processing effluents. However, the stability of the generated iron-arsenate coprecipitate is still of concern. In this work, we developed a two-step coprecipitation process involving the use of iron and aluminum and tested the stability of the resultant coprecipitates. The two-step Fe–As–Fe or Fe–As–Al coprecipitation process involved an initial Fe/As = 2 coprecipitation at pH4 to remove arsenic from water down to 0.25 mg/L, followed by introduction of iron or aluminum (Fe/As = 2, Al/As = 1.5 or 2). The two-step coprecipitates showed higher stability than traditional Fe/As = 4 coprecipitate under both oxic and anoxic conditions. Leaching stability was enhanced when aluminum was applied in the second step. The use of aluminum in the second step also inhibited microbial mediated arsenate reduction and arsenic remobilization. The results suggest that the two-step coprecipitation process is superior to conventional coprecipitation methods with respect to the stability of the generated arsenic-bearing solid waste. The use of Al in the second step is better than Fe to enhance the stability. This work may have important implications to the development of new technologies for efficient arsenic removal from hydrometallurgical solutions and safe disposal in both oxic and anoxic environment. [Display omitted] ► A new coprecipitation process for arsenic removal/immobilization from water was developed. ► This process involves an arsenic removal step and a stability improvement step. ► Arsenic can be removed to sub-ppm level and the solid shows considerably high stability.
doi_str_mv 10.1016/j.watres.2011.11.045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920805172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135411007378</els_id><sourcerecordid>920805172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-a06a9b46751842f247c2b186ff052d1452a1f33dd9399006b5b631cef22ea7693</originalsourceid><addsrcrecordid>eNqFkd2K1DAUgIMo7rj6BiK5EdeLjkmaNM2NMCyuDix4o9chTU80Q9vUJJ1FH8JnNmNHvVvhQAL5zk_Oh9BzSraU0ObNYXtncoS0ZYTSbQnCxQO0oa1UFeO8fYg2hPC6orXgF-hJSgdCCGO1eowuGKOcCaU26OcOT-EIA853oUoZZmzDHMH62WeTfZjwHIOFlPCS_PQF38DVfr9_jc3U492w3l2IOH8FHGEMRzP8fvPjGDo_-B9rkeCwiQkmkwG7GEZsrO-9xebbAmFJOIVhOYFP0SNnhgTPzucl-nzz7tP1h-r24_v99e62soKxXBnSGNXxRgracuYYl5Z1tG2cI4L1lAtmqKvrvle1UoQ0neiamlpwjIGRjaov0au1bvldGSFlPfpkYRjMdJpHK0ZaIqhk_ycpk0oSygt5dS9JpZSUt2XzBeUramNIKYLTc_Sjid81JfpkVx_0alef7OoSxW5Je3HusHQj9H-T_ugswMszYJI1g4tmsj7940SthCRN4d6uHJQdHz1EnayHyULvi_us--Dvn-QXlLPEVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777148142</pqid></control><display><type>article</type><title>A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Jia, Yongfeng ; Zhang, Danni ; Pan, Rongrong ; Xu, Liying ; Demopoulos, George P.</creator><creatorcontrib>Jia, Yongfeng ; Zhang, Danni ; Pan, Rongrong ; Xu, Liying ; Demopoulos, George P.</creatorcontrib><description>Lime neutralization and coprecipitation of arsenate with iron is widely practiced for the removal and immobilization of arsenic from mineral processing effluents. However, the stability of the generated iron-arsenate coprecipitate is still of concern. In this work, we developed a two-step coprecipitation process involving the use of iron and aluminum and tested the stability of the resultant coprecipitates. The two-step Fe–As–Fe or Fe–As–Al coprecipitation process involved an initial Fe/As = 2 coprecipitation at pH4 to remove arsenic from water down to 0.25 mg/L, followed by introduction of iron or aluminum (Fe/As = 2, Al/As = 1.5 or 2). The two-step coprecipitates showed higher stability than traditional Fe/As = 4 coprecipitate under both oxic and anoxic conditions. Leaching stability was enhanced when aluminum was applied in the second step. The use of aluminum in the second step also inhibited microbial mediated arsenate reduction and arsenic remobilization. The results suggest that the two-step coprecipitation process is superior to conventional coprecipitation methods with respect to the stability of the generated arsenic-bearing solid waste. The use of Al in the second step is better than Fe to enhance the stability. This work may have important implications to the development of new technologies for efficient arsenic removal from hydrometallurgical solutions and safe disposal in both oxic and anoxic environment. [Display omitted] ► A new coprecipitation process for arsenic removal/immobilization from water was developed. ► This process involves an arsenic removal step and a stability improvement step. ► Arsenic can be removed to sub-ppm level and the solid shows considerably high stability.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2011.11.045</identifier><identifier>PMID: 22142599</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminum ; Aluminum - chemistry ; Aluminum Compounds - chemistry ; Aluminum Hydroxide - chemistry ; Applied sciences ; Arsenate ; Arsenates ; Arsenates - chemistry ; Arsenic ; Arsenic - analysis ; Arsenic - chemistry ; Chemical Precipitation ; Coprecipitation ; Exact sciences and technology ; Ferric Compounds - chemistry ; Hydrogen-Ion Concentration ; Immobilization ; Iron ; Iron - chemistry ; Kinetics ; Microorganisms ; Pollution ; Removal ; Spectrometry, Fluorescence ; Stability ; Two-step ; Waste Disposal, Fluid - methods ; Water Pollutants, Chemical - analysis ; Water Pollutants, Chemical - chemistry ; Water Purification - methods ; Water treatment and pollution ; X-Ray Absorption Spectroscopy</subject><ispartof>Water research (Oxford), 2012-02, Vol.46 (2), p.500-508</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-a06a9b46751842f247c2b186ff052d1452a1f33dd9399006b5b631cef22ea7693</citedby><cites>FETCH-LOGICAL-c522t-a06a9b46751842f247c2b186ff052d1452a1f33dd9399006b5b631cef22ea7693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043135411007378$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25395706$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22142599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Yongfeng</creatorcontrib><creatorcontrib>Zhang, Danni</creatorcontrib><creatorcontrib>Pan, Rongrong</creatorcontrib><creatorcontrib>Xu, Liying</creatorcontrib><creatorcontrib>Demopoulos, George P.</creatorcontrib><title>A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Lime neutralization and coprecipitation of arsenate with iron is widely practiced for the removal and immobilization of arsenic from mineral processing effluents. However, the stability of the generated iron-arsenate coprecipitate is still of concern. In this work, we developed a two-step coprecipitation process involving the use of iron and aluminum and tested the stability of the resultant coprecipitates. The two-step Fe–As–Fe or Fe–As–Al coprecipitation process involved an initial Fe/As = 2 coprecipitation at pH4 to remove arsenic from water down to 0.25 mg/L, followed by introduction of iron or aluminum (Fe/As = 2, Al/As = 1.5 or 2). The two-step coprecipitates showed higher stability than traditional Fe/As = 4 coprecipitate under both oxic and anoxic conditions. Leaching stability was enhanced when aluminum was applied in the second step. The use of aluminum in the second step also inhibited microbial mediated arsenate reduction and arsenic remobilization. The results suggest that the two-step coprecipitation process is superior to conventional coprecipitation methods with respect to the stability of the generated arsenic-bearing solid waste. The use of Al in the second step is better than Fe to enhance the stability. This work may have important implications to the development of new technologies for efficient arsenic removal from hydrometallurgical solutions and safe disposal in both oxic and anoxic environment. [Display omitted] ► A new coprecipitation process for arsenic removal/immobilization from water was developed. ► This process involves an arsenic removal step and a stability improvement step. ► Arsenic can be removed to sub-ppm level and the solid shows considerably high stability.</description><subject>Aluminum</subject><subject>Aluminum - chemistry</subject><subject>Aluminum Compounds - chemistry</subject><subject>Aluminum Hydroxide - chemistry</subject><subject>Applied sciences</subject><subject>Arsenate</subject><subject>Arsenates</subject><subject>Arsenates - chemistry</subject><subject>Arsenic</subject><subject>Arsenic - analysis</subject><subject>Arsenic - chemistry</subject><subject>Chemical Precipitation</subject><subject>Coprecipitation</subject><subject>Exact sciences and technology</subject><subject>Ferric Compounds - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Immobilization</subject><subject>Iron</subject><subject>Iron - chemistry</subject><subject>Kinetics</subject><subject>Microorganisms</subject><subject>Pollution</subject><subject>Removal</subject><subject>Spectrometry, Fluorescence</subject><subject>Stability</subject><subject>Two-step</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Purification - methods</subject><subject>Water treatment and pollution</subject><subject>X-Ray Absorption Spectroscopy</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd2K1DAUgIMo7rj6BiK5EdeLjkmaNM2NMCyuDix4o9chTU80Q9vUJJ1FH8JnNmNHvVvhQAL5zk_Oh9BzSraU0ObNYXtncoS0ZYTSbQnCxQO0oa1UFeO8fYg2hPC6orXgF-hJSgdCCGO1eowuGKOcCaU26OcOT-EIA853oUoZZmzDHMH62WeTfZjwHIOFlPCS_PQF38DVfr9_jc3U492w3l2IOH8FHGEMRzP8fvPjGDo_-B9rkeCwiQkmkwG7GEZsrO-9xebbAmFJOIVhOYFP0SNnhgTPzucl-nzz7tP1h-r24_v99e62soKxXBnSGNXxRgracuYYl5Z1tG2cI4L1lAtmqKvrvle1UoQ0neiamlpwjIGRjaov0au1bvldGSFlPfpkYRjMdJpHK0ZaIqhk_ycpk0oSygt5dS9JpZSUt2XzBeUramNIKYLTc_Sjid81JfpkVx_0alef7OoSxW5Je3HusHQj9H-T_ugswMszYJI1g4tmsj7940SthCRN4d6uHJQdHz1EnayHyULvi_us--Dvn-QXlLPEVw</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Jia, Yongfeng</creator><creator>Zhang, Danni</creator><creator>Pan, Rongrong</creator><creator>Xu, Liying</creator><creator>Demopoulos, George P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20120201</creationdate><title>A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution</title><author>Jia, Yongfeng ; Zhang, Danni ; Pan, Rongrong ; Xu, Liying ; Demopoulos, George P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-a06a9b46751842f247c2b186ff052d1452a1f33dd9399006b5b631cef22ea7693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aluminum</topic><topic>Aluminum - chemistry</topic><topic>Aluminum Compounds - chemistry</topic><topic>Aluminum Hydroxide - chemistry</topic><topic>Applied sciences</topic><topic>Arsenate</topic><topic>Arsenates</topic><topic>Arsenates - chemistry</topic><topic>Arsenic</topic><topic>Arsenic - analysis</topic><topic>Arsenic - chemistry</topic><topic>Chemical Precipitation</topic><topic>Coprecipitation</topic><topic>Exact sciences and technology</topic><topic>Ferric Compounds - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Immobilization</topic><topic>Iron</topic><topic>Iron - chemistry</topic><topic>Kinetics</topic><topic>Microorganisms</topic><topic>Pollution</topic><topic>Removal</topic><topic>Spectrometry, Fluorescence</topic><topic>Stability</topic><topic>Two-step</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Purification - methods</topic><topic>Water treatment and pollution</topic><topic>X-Ray Absorption Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Yongfeng</creatorcontrib><creatorcontrib>Zhang, Danni</creatorcontrib><creatorcontrib>Pan, Rongrong</creatorcontrib><creatorcontrib>Xu, Liying</creatorcontrib><creatorcontrib>Demopoulos, George P.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Yongfeng</au><au>Zhang, Danni</au><au>Pan, Rongrong</au><au>Xu, Liying</au><au>Demopoulos, George P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>46</volume><issue>2</issue><spage>500</spage><epage>508</epage><pages>500-508</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>Lime neutralization and coprecipitation of arsenate with iron is widely practiced for the removal and immobilization of arsenic from mineral processing effluents. However, the stability of the generated iron-arsenate coprecipitate is still of concern. In this work, we developed a two-step coprecipitation process involving the use of iron and aluminum and tested the stability of the resultant coprecipitates. The two-step Fe–As–Fe or Fe–As–Al coprecipitation process involved an initial Fe/As = 2 coprecipitation at pH4 to remove arsenic from water down to 0.25 mg/L, followed by introduction of iron or aluminum (Fe/As = 2, Al/As = 1.5 or 2). The two-step coprecipitates showed higher stability than traditional Fe/As = 4 coprecipitate under both oxic and anoxic conditions. Leaching stability was enhanced when aluminum was applied in the second step. The use of aluminum in the second step also inhibited microbial mediated arsenate reduction and arsenic remobilization. The results suggest that the two-step coprecipitation process is superior to conventional coprecipitation methods with respect to the stability of the generated arsenic-bearing solid waste. The use of Al in the second step is better than Fe to enhance the stability. This work may have important implications to the development of new technologies for efficient arsenic removal from hydrometallurgical solutions and safe disposal in both oxic and anoxic environment. [Display omitted] ► A new coprecipitation process for arsenic removal/immobilization from water was developed. ► This process involves an arsenic removal step and a stability improvement step. ► Arsenic can be removed to sub-ppm level and the solid shows considerably high stability.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22142599</pmid><doi>10.1016/j.watres.2011.11.045</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2012-02, Vol.46 (2), p.500-508
issn 0043-1354
1879-2448
language eng
recordid cdi_proquest_miscellaneous_920805172
source MEDLINE; Elsevier ScienceDirect Journals
subjects Aluminum
Aluminum - chemistry
Aluminum Compounds - chemistry
Aluminum Hydroxide - chemistry
Applied sciences
Arsenate
Arsenates
Arsenates - chemistry
Arsenic
Arsenic - analysis
Arsenic - chemistry
Chemical Precipitation
Coprecipitation
Exact sciences and technology
Ferric Compounds - chemistry
Hydrogen-Ion Concentration
Immobilization
Iron
Iron - chemistry
Kinetics
Microorganisms
Pollution
Removal
Spectrometry, Fluorescence
Stability
Two-step
Waste Disposal, Fluid - methods
Water Pollutants, Chemical - analysis
Water Pollutants, Chemical - chemistry
Water Purification - methods
Water treatment and pollution
X-Ray Absorption Spectroscopy
title A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20two-step%20coprecipitation%20process%20using%20Fe(III)%20and%20Al(III)%20for%20the%20removal%20and%20immobilization%20of%20arsenate%20from%20acidic%20aqueous%20solution&rft.jtitle=Water%20research%20(Oxford)&rft.au=Jia,%20Yongfeng&rft.date=2012-02-01&rft.volume=46&rft.issue=2&rft.spage=500&rft.epage=508&rft.pages=500-508&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2011.11.045&rft_dat=%3Cproquest_cross%3E920805172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777148142&rft_id=info:pmid/22142599&rft_els_id=S0043135411007378&rfr_iscdi=true