Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential

Mutations in GDAP1 lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease, CMT), indicating that GDAP1 is essential for the viability of cells in the peripheral nervous system. GDAP1 contains domains characteristic of glutathione-S-transferases (GSTs), is lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2012-01, Vol.21 (1), p.150-162
Hauptverfasser: Noack, Rebecca, Frede, Svenja, Albrecht, Philipp, Henke, Nadine, Pfeiffer, Annika, Knoll, Katrin, Dehmel, Thomas, Meyer zu Hörste, Gerd, Stettner, Mark, Kieseier, Bernd C., Summer, Holger, Golz, Stefan, Kochanski, Andrzej, Wiedau-Pazos, Martina, Arnold, Susanne, Lewerenz, Jan, Methner, Axel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 1
container_start_page 150
container_title Human molecular genetics
container_volume 21
creator Noack, Rebecca
Frede, Svenja
Albrecht, Philipp
Henke, Nadine
Pfeiffer, Annika
Knoll, Katrin
Dehmel, Thomas
Meyer zu Hörste, Gerd
Stettner, Mark
Kieseier, Bernd C.
Summer, Holger
Golz, Stefan
Kochanski, Andrzej
Wiedau-Pazos, Martina
Arnold, Susanne
Lewerenz, Jan
Methner, Axel
description Mutations in GDAP1 lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease, CMT), indicating that GDAP1 is essential for the viability of cells in the peripheral nervous system. GDAP1 contains domains characteristic of glutathione-S-transferases (GSTs), is located in the outer mitochondrial membrane and induces fragmentation of mitochondria. We found GDAP1 upregulated in neuronal HT22 cells selected for resistance against oxidative stress. GDAP1 over-expression protected against oxidative stress caused by depletion of the intracellular antioxidant glutathione (GHS) and against effectors of GHS depletion that affect the mitochondrial membrane integrity like truncated BH3-interacting domain death agonist and 12/15-lipoxygenase. Gdap1 knockdown, in contrast, increased the susceptibility of motor neuron-like NSC34 cells against GHS depletion. Over-expression of wild-type GDAP1, but not of GDAP1 with recessively inherited mutations that cause disease and reduce fission activity, increased the total cellular GHS content and the mitochondrial membrane potential up to a level where it apparently limits mitochondrial respiration, leading to reduced mitochondrial Ca2+ uptake and superoxide production. Fibroblasts from autosomal-recessive CMT4A patients had reduced GDAP1 levels, reduced GHS concentration and a reduced mitochondrial membrane potential. Thus, our results suggest that the potential GST GDAP1 is implicated in the control of the cellular GHS content and mitochondrial activity, suggesting an involvement of oxidative stress in the pathogenesis of CMT4A.
doi_str_mv 10.1093/hmg/ddr450
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920804075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/hmg/ddr450</oup_id><sourcerecordid>911935458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-22e415fdfdc3509a1fb963eb0adbf099c9c473940355c747827821d6bceb78e43</originalsourceid><addsrcrecordid>eNqFkctq5DAQRUWYkHQem3zAoM0wEHBSsiTbyq7pPCEhWXTWRpbkWINtOZK8mL-Pmu4kuxkoKKg6VF3uReiMwAUBQS-74e1Sa8847KEFYQVkOVT0B1qAKFhWCCgO0VEIfwBIwWh5gA5zIgpOARZoWnXSKxezJ-mtydbOxQ5rG4wMBq-e1mx5he-uly8E21H5zTRgZfp-7qXHb_0cZeysGw2Wo8axM3iw0anOjdpb2ePBDI2XaT25aMaYRidov5V9MKe7foxeb2_Wq_vs8fnuYbV8zBSrIGZ5bhjhrW61ohyEJG0jCmoakLppQQglFCupYEA5VyUrqzwV0UWjTFNWhtFj9Ht7d_LufTYh1oMNG-VJjZtDLZJHwKDk_ycJEZQzXiXyfEsq70Lwpq0nbwfp_9YE6k0UdYqi3kaR4J-7s3MzGP2FfnqfgF87QAYl-zb5pGz45jhnVSXKb87N078efgCFFJ6q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911935458</pqid></control><display><type>article</type><title>Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Noack, Rebecca ; Frede, Svenja ; Albrecht, Philipp ; Henke, Nadine ; Pfeiffer, Annika ; Knoll, Katrin ; Dehmel, Thomas ; Meyer zu Hörste, Gerd ; Stettner, Mark ; Kieseier, Bernd C. ; Summer, Holger ; Golz, Stefan ; Kochanski, Andrzej ; Wiedau-Pazos, Martina ; Arnold, Susanne ; Lewerenz, Jan ; Methner, Axel</creator><creatorcontrib>Noack, Rebecca ; Frede, Svenja ; Albrecht, Philipp ; Henke, Nadine ; Pfeiffer, Annika ; Knoll, Katrin ; Dehmel, Thomas ; Meyer zu Hörste, Gerd ; Stettner, Mark ; Kieseier, Bernd C. ; Summer, Holger ; Golz, Stefan ; Kochanski, Andrzej ; Wiedau-Pazos, Martina ; Arnold, Susanne ; Lewerenz, Jan ; Methner, Axel</creatorcontrib><description>Mutations in GDAP1 lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease, CMT), indicating that GDAP1 is essential for the viability of cells in the peripheral nervous system. GDAP1 contains domains characteristic of glutathione-S-transferases (GSTs), is located in the outer mitochondrial membrane and induces fragmentation of mitochondria. We found GDAP1 upregulated in neuronal HT22 cells selected for resistance against oxidative stress. GDAP1 over-expression protected against oxidative stress caused by depletion of the intracellular antioxidant glutathione (GHS) and against effectors of GHS depletion that affect the mitochondrial membrane integrity like truncated BH3-interacting domain death agonist and 12/15-lipoxygenase. Gdap1 knockdown, in contrast, increased the susceptibility of motor neuron-like NSC34 cells against GHS depletion. Over-expression of wild-type GDAP1, but not of GDAP1 with recessively inherited mutations that cause disease and reduce fission activity, increased the total cellular GHS content and the mitochondrial membrane potential up to a level where it apparently limits mitochondrial respiration, leading to reduced mitochondrial Ca2+ uptake and superoxide production. Fibroblasts from autosomal-recessive CMT4A patients had reduced GDAP1 levels, reduced GHS concentration and a reduced mitochondrial membrane potential. Thus, our results suggest that the potential GST GDAP1 is implicated in the control of the cellular GHS content and mitochondrial activity, suggesting an involvement of oxidative stress in the pathogenesis of CMT4A.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddr450</identifier><identifier>PMID: 21965300</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Cell Line ; Charcot-Marie-Tooth Disease - genetics ; Charcot-Marie-Tooth Disease - metabolism ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; Glutathione - metabolism ; Humans ; Medical sciences ; Membrane Potential, Mitochondrial ; Mitochondria - metabolism ; Molecular and cellular biology ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurology ; Oxidative Stress</subject><ispartof>Human molecular genetics, 2012-01, Vol.21 (1), p.150-162</ispartof><rights>The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-22e415fdfdc3509a1fb963eb0adbf099c9c473940355c747827821d6bceb78e43</citedby><cites>FETCH-LOGICAL-c480t-22e415fdfdc3509a1fb963eb0adbf099c9c473940355c747827821d6bceb78e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25548897$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21965300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Noack, Rebecca</creatorcontrib><creatorcontrib>Frede, Svenja</creatorcontrib><creatorcontrib>Albrecht, Philipp</creatorcontrib><creatorcontrib>Henke, Nadine</creatorcontrib><creatorcontrib>Pfeiffer, Annika</creatorcontrib><creatorcontrib>Knoll, Katrin</creatorcontrib><creatorcontrib>Dehmel, Thomas</creatorcontrib><creatorcontrib>Meyer zu Hörste, Gerd</creatorcontrib><creatorcontrib>Stettner, Mark</creatorcontrib><creatorcontrib>Kieseier, Bernd C.</creatorcontrib><creatorcontrib>Summer, Holger</creatorcontrib><creatorcontrib>Golz, Stefan</creatorcontrib><creatorcontrib>Kochanski, Andrzej</creatorcontrib><creatorcontrib>Wiedau-Pazos, Martina</creatorcontrib><creatorcontrib>Arnold, Susanne</creatorcontrib><creatorcontrib>Lewerenz, Jan</creatorcontrib><creatorcontrib>Methner, Axel</creatorcontrib><title>Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Mutations in GDAP1 lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease, CMT), indicating that GDAP1 is essential for the viability of cells in the peripheral nervous system. GDAP1 contains domains characteristic of glutathione-S-transferases (GSTs), is located in the outer mitochondrial membrane and induces fragmentation of mitochondria. We found GDAP1 upregulated in neuronal HT22 cells selected for resistance against oxidative stress. GDAP1 over-expression protected against oxidative stress caused by depletion of the intracellular antioxidant glutathione (GHS) and against effectors of GHS depletion that affect the mitochondrial membrane integrity like truncated BH3-interacting domain death agonist and 12/15-lipoxygenase. Gdap1 knockdown, in contrast, increased the susceptibility of motor neuron-like NSC34 cells against GHS depletion. Over-expression of wild-type GDAP1, but not of GDAP1 with recessively inherited mutations that cause disease and reduce fission activity, increased the total cellular GHS content and the mitochondrial membrane potential up to a level where it apparently limits mitochondrial respiration, leading to reduced mitochondrial Ca2+ uptake and superoxide production. Fibroblasts from autosomal-recessive CMT4A patients had reduced GDAP1 levels, reduced GHS concentration and a reduced mitochondrial membrane potential. Thus, our results suggest that the potential GST GDAP1 is implicated in the control of the cellular GHS content and mitochondrial activity, suggesting an involvement of oxidative stress in the pathogenesis of CMT4A.</description><subject>Biological and medical sciences</subject><subject>Cell Line</subject><subject>Charcot-Marie-Tooth Disease - genetics</subject><subject>Charcot-Marie-Tooth Disease - metabolism</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Glutathione - metabolism</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Mitochondria - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurology</subject><subject>Oxidative Stress</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctq5DAQRUWYkHQem3zAoM0wEHBSsiTbyq7pPCEhWXTWRpbkWINtOZK8mL-Pmu4kuxkoKKg6VF3uReiMwAUBQS-74e1Sa8847KEFYQVkOVT0B1qAKFhWCCgO0VEIfwBIwWh5gA5zIgpOARZoWnXSKxezJ-mtydbOxQ5rG4wMBq-e1mx5he-uly8E21H5zTRgZfp-7qXHb_0cZeysGw2Wo8axM3iw0anOjdpb2ePBDI2XaT25aMaYRidov5V9MKe7foxeb2_Wq_vs8fnuYbV8zBSrIGZ5bhjhrW61ohyEJG0jCmoakLppQQglFCupYEA5VyUrqzwV0UWjTFNWhtFj9Ht7d_LufTYh1oMNG-VJjZtDLZJHwKDk_ycJEZQzXiXyfEsq70Lwpq0nbwfp_9YE6k0UdYqi3kaR4J-7s3MzGP2FfnqfgF87QAYl-zb5pGz45jhnVSXKb87N078efgCFFJ6q</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Noack, Rebecca</creator><creator>Frede, Svenja</creator><creator>Albrecht, Philipp</creator><creator>Henke, Nadine</creator><creator>Pfeiffer, Annika</creator><creator>Knoll, Katrin</creator><creator>Dehmel, Thomas</creator><creator>Meyer zu Hörste, Gerd</creator><creator>Stettner, Mark</creator><creator>Kieseier, Bernd C.</creator><creator>Summer, Holger</creator><creator>Golz, Stefan</creator><creator>Kochanski, Andrzej</creator><creator>Wiedau-Pazos, Martina</creator><creator>Arnold, Susanne</creator><creator>Lewerenz, Jan</creator><creator>Methner, Axel</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20120101</creationdate><title>Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential</title><author>Noack, Rebecca ; Frede, Svenja ; Albrecht, Philipp ; Henke, Nadine ; Pfeiffer, Annika ; Knoll, Katrin ; Dehmel, Thomas ; Meyer zu Hörste, Gerd ; Stettner, Mark ; Kieseier, Bernd C. ; Summer, Holger ; Golz, Stefan ; Kochanski, Andrzej ; Wiedau-Pazos, Martina ; Arnold, Susanne ; Lewerenz, Jan ; Methner, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-22e415fdfdc3509a1fb963eb0adbf099c9c473940355c747827821d6bceb78e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>Cell Line</topic><topic>Charcot-Marie-Tooth Disease - genetics</topic><topic>Charcot-Marie-Tooth Disease - metabolism</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Glutathione - metabolism</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Mitochondria - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurology</topic><topic>Oxidative Stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noack, Rebecca</creatorcontrib><creatorcontrib>Frede, Svenja</creatorcontrib><creatorcontrib>Albrecht, Philipp</creatorcontrib><creatorcontrib>Henke, Nadine</creatorcontrib><creatorcontrib>Pfeiffer, Annika</creatorcontrib><creatorcontrib>Knoll, Katrin</creatorcontrib><creatorcontrib>Dehmel, Thomas</creatorcontrib><creatorcontrib>Meyer zu Hörste, Gerd</creatorcontrib><creatorcontrib>Stettner, Mark</creatorcontrib><creatorcontrib>Kieseier, Bernd C.</creatorcontrib><creatorcontrib>Summer, Holger</creatorcontrib><creatorcontrib>Golz, Stefan</creatorcontrib><creatorcontrib>Kochanski, Andrzej</creatorcontrib><creatorcontrib>Wiedau-Pazos, Martina</creatorcontrib><creatorcontrib>Arnold, Susanne</creatorcontrib><creatorcontrib>Lewerenz, Jan</creatorcontrib><creatorcontrib>Methner, Axel</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noack, Rebecca</au><au>Frede, Svenja</au><au>Albrecht, Philipp</au><au>Henke, Nadine</au><au>Pfeiffer, Annika</au><au>Knoll, Katrin</au><au>Dehmel, Thomas</au><au>Meyer zu Hörste, Gerd</au><au>Stettner, Mark</au><au>Kieseier, Bernd C.</au><au>Summer, Holger</au><au>Golz, Stefan</au><au>Kochanski, Andrzej</au><au>Wiedau-Pazos, Martina</au><au>Arnold, Susanne</au><au>Lewerenz, Jan</au><au>Methner, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>21</volume><issue>1</issue><spage>150</spage><epage>162</epage><pages>150-162</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Mutations in GDAP1 lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease, CMT), indicating that GDAP1 is essential for the viability of cells in the peripheral nervous system. GDAP1 contains domains characteristic of glutathione-S-transferases (GSTs), is located in the outer mitochondrial membrane and induces fragmentation of mitochondria. We found GDAP1 upregulated in neuronal HT22 cells selected for resistance against oxidative stress. GDAP1 over-expression protected against oxidative stress caused by depletion of the intracellular antioxidant glutathione (GHS) and against effectors of GHS depletion that affect the mitochondrial membrane integrity like truncated BH3-interacting domain death agonist and 12/15-lipoxygenase. Gdap1 knockdown, in contrast, increased the susceptibility of motor neuron-like NSC34 cells against GHS depletion. Over-expression of wild-type GDAP1, but not of GDAP1 with recessively inherited mutations that cause disease and reduce fission activity, increased the total cellular GHS content and the mitochondrial membrane potential up to a level where it apparently limits mitochondrial respiration, leading to reduced mitochondrial Ca2+ uptake and superoxide production. Fibroblasts from autosomal-recessive CMT4A patients had reduced GDAP1 levels, reduced GHS concentration and a reduced mitochondrial membrane potential. Thus, our results suggest that the potential GST GDAP1 is implicated in the control of the cellular GHS content and mitochondrial activity, suggesting an involvement of oxidative stress in the pathogenesis of CMT4A.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>21965300</pmid><doi>10.1093/hmg/ddr450</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2012-01, Vol.21 (1), p.150-162
issn 0964-6906
1460-2083
language eng
recordid cdi_proquest_miscellaneous_920804075
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Biological and medical sciences
Cell Line
Charcot-Marie-Tooth Disease - genetics
Charcot-Marie-Tooth Disease - metabolism
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Fundamental and applied biological sciences. Psychology
Genetics of eukaryotes. Biological and molecular evolution
Glutathione - metabolism
Humans
Medical sciences
Membrane Potential, Mitochondrial
Mitochondria - metabolism
Molecular and cellular biology
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neurology
Oxidative Stress
title Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charcot-Marie-Tooth%20disease%20CMT4A:%20GDAP1%20increases%20cellular%20glutathione%20and%20the%20mitochondrial%20membrane%20potential&rft.jtitle=Human%20molecular%20genetics&rft.au=Noack,%20Rebecca&rft.date=2012-01-01&rft.volume=21&rft.issue=1&rft.spage=150&rft.epage=162&rft.pages=150-162&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddr450&rft_dat=%3Cproquest_cross%3E911935458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911935458&rft_id=info:pmid/21965300&rft_oup_id=10.1093/hmg/ddr450&rfr_iscdi=true