Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential
Mutations in GDAP1 lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease, CMT), indicating that GDAP1 is essential for the viability of cells in the peripheral nervous system. GDAP1 contains domains characteristic of glutathione-S-transferases (GSTs), is lo...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2012-01, Vol.21 (1), p.150-162 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 162 |
---|---|
container_issue | 1 |
container_start_page | 150 |
container_title | Human molecular genetics |
container_volume | 21 |
creator | Noack, Rebecca Frede, Svenja Albrecht, Philipp Henke, Nadine Pfeiffer, Annika Knoll, Katrin Dehmel, Thomas Meyer zu Hörste, Gerd Stettner, Mark Kieseier, Bernd C. Summer, Holger Golz, Stefan Kochanski, Andrzej Wiedau-Pazos, Martina Arnold, Susanne Lewerenz, Jan Methner, Axel |
description | Mutations in GDAP1 lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease, CMT), indicating that GDAP1 is essential for the viability of cells in the peripheral nervous system. GDAP1 contains domains characteristic of glutathione-S-transferases (GSTs), is located in the outer mitochondrial membrane and induces fragmentation of mitochondria. We found GDAP1 upregulated in neuronal HT22 cells selected for resistance against oxidative stress. GDAP1 over-expression protected against oxidative stress caused by depletion of the intracellular antioxidant glutathione (GHS) and against effectors of GHS depletion that affect the mitochondrial membrane integrity like truncated BH3-interacting domain death agonist and 12/15-lipoxygenase. Gdap1 knockdown, in contrast, increased the susceptibility of motor neuron-like NSC34 cells against GHS depletion. Over-expression of wild-type GDAP1, but not of GDAP1 with recessively inherited mutations that cause disease and reduce fission activity, increased the total cellular GHS content and the mitochondrial membrane potential up to a level where it apparently limits mitochondrial respiration, leading to reduced mitochondrial Ca2+ uptake and superoxide production. Fibroblasts from autosomal-recessive CMT4A patients had reduced GDAP1 levels, reduced GHS concentration and a reduced mitochondrial membrane potential. Thus, our results suggest that the potential GST GDAP1 is implicated in the control of the cellular GHS content and mitochondrial activity, suggesting an involvement of oxidative stress in the pathogenesis of CMT4A. |
doi_str_mv | 10.1093/hmg/ddr450 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920804075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/hmg/ddr450</oup_id><sourcerecordid>911935458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-22e415fdfdc3509a1fb963eb0adbf099c9c473940355c747827821d6bceb78e43</originalsourceid><addsrcrecordid>eNqFkctq5DAQRUWYkHQem3zAoM0wEHBSsiTbyq7pPCEhWXTWRpbkWINtOZK8mL-Pmu4kuxkoKKg6VF3uReiMwAUBQS-74e1Sa8847KEFYQVkOVT0B1qAKFhWCCgO0VEIfwBIwWh5gA5zIgpOARZoWnXSKxezJ-mtydbOxQ5rG4wMBq-e1mx5he-uly8E21H5zTRgZfp-7qXHb_0cZeysGw2Wo8axM3iw0anOjdpb2ePBDI2XaT25aMaYRidov5V9MKe7foxeb2_Wq_vs8fnuYbV8zBSrIGZ5bhjhrW61ohyEJG0jCmoakLppQQglFCupYEA5VyUrqzwV0UWjTFNWhtFj9Ht7d_LufTYh1oMNG-VJjZtDLZJHwKDk_ycJEZQzXiXyfEsq70Lwpq0nbwfp_9YE6k0UdYqi3kaR4J-7s3MzGP2FfnqfgF87QAYl-zb5pGz45jhnVSXKb87N078efgCFFJ6q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911935458</pqid></control><display><type>article</type><title>Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Noack, Rebecca ; Frede, Svenja ; Albrecht, Philipp ; Henke, Nadine ; Pfeiffer, Annika ; Knoll, Katrin ; Dehmel, Thomas ; Meyer zu Hörste, Gerd ; Stettner, Mark ; Kieseier, Bernd C. ; Summer, Holger ; Golz, Stefan ; Kochanski, Andrzej ; Wiedau-Pazos, Martina ; Arnold, Susanne ; Lewerenz, Jan ; Methner, Axel</creator><creatorcontrib>Noack, Rebecca ; Frede, Svenja ; Albrecht, Philipp ; Henke, Nadine ; Pfeiffer, Annika ; Knoll, Katrin ; Dehmel, Thomas ; Meyer zu Hörste, Gerd ; Stettner, Mark ; Kieseier, Bernd C. ; Summer, Holger ; Golz, Stefan ; Kochanski, Andrzej ; Wiedau-Pazos, Martina ; Arnold, Susanne ; Lewerenz, Jan ; Methner, Axel</creatorcontrib><description>Mutations in GDAP1 lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease, CMT), indicating that GDAP1 is essential for the viability of cells in the peripheral nervous system. GDAP1 contains domains characteristic of glutathione-S-transferases (GSTs), is located in the outer mitochondrial membrane and induces fragmentation of mitochondria. We found GDAP1 upregulated in neuronal HT22 cells selected for resistance against oxidative stress. GDAP1 over-expression protected against oxidative stress caused by depletion of the intracellular antioxidant glutathione (GHS) and against effectors of GHS depletion that affect the mitochondrial membrane integrity like truncated BH3-interacting domain death agonist and 12/15-lipoxygenase. Gdap1 knockdown, in contrast, increased the susceptibility of motor neuron-like NSC34 cells against GHS depletion. Over-expression of wild-type GDAP1, but not of GDAP1 with recessively inherited mutations that cause disease and reduce fission activity, increased the total cellular GHS content and the mitochondrial membrane potential up to a level where it apparently limits mitochondrial respiration, leading to reduced mitochondrial Ca2+ uptake and superoxide production. Fibroblasts from autosomal-recessive CMT4A patients had reduced GDAP1 levels, reduced GHS concentration and a reduced mitochondrial membrane potential. Thus, our results suggest that the potential GST GDAP1 is implicated in the control of the cellular GHS content and mitochondrial activity, suggesting an involvement of oxidative stress in the pathogenesis of CMT4A.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddr450</identifier><identifier>PMID: 21965300</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Cell Line ; Charcot-Marie-Tooth Disease - genetics ; Charcot-Marie-Tooth Disease - metabolism ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; Glutathione - metabolism ; Humans ; Medical sciences ; Membrane Potential, Mitochondrial ; Mitochondria - metabolism ; Molecular and cellular biology ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurology ; Oxidative Stress</subject><ispartof>Human molecular genetics, 2012-01, Vol.21 (1), p.150-162</ispartof><rights>The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-22e415fdfdc3509a1fb963eb0adbf099c9c473940355c747827821d6bceb78e43</citedby><cites>FETCH-LOGICAL-c480t-22e415fdfdc3509a1fb963eb0adbf099c9c473940355c747827821d6bceb78e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25548897$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21965300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Noack, Rebecca</creatorcontrib><creatorcontrib>Frede, Svenja</creatorcontrib><creatorcontrib>Albrecht, Philipp</creatorcontrib><creatorcontrib>Henke, Nadine</creatorcontrib><creatorcontrib>Pfeiffer, Annika</creatorcontrib><creatorcontrib>Knoll, Katrin</creatorcontrib><creatorcontrib>Dehmel, Thomas</creatorcontrib><creatorcontrib>Meyer zu Hörste, Gerd</creatorcontrib><creatorcontrib>Stettner, Mark</creatorcontrib><creatorcontrib>Kieseier, Bernd C.</creatorcontrib><creatorcontrib>Summer, Holger</creatorcontrib><creatorcontrib>Golz, Stefan</creatorcontrib><creatorcontrib>Kochanski, Andrzej</creatorcontrib><creatorcontrib>Wiedau-Pazos, Martina</creatorcontrib><creatorcontrib>Arnold, Susanne</creatorcontrib><creatorcontrib>Lewerenz, Jan</creatorcontrib><creatorcontrib>Methner, Axel</creatorcontrib><title>Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Mutations in GDAP1 lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease, CMT), indicating that GDAP1 is essential for the viability of cells in the peripheral nervous system. GDAP1 contains domains characteristic of glutathione-S-transferases (GSTs), is located in the outer mitochondrial membrane and induces fragmentation of mitochondria. We found GDAP1 upregulated in neuronal HT22 cells selected for resistance against oxidative stress. GDAP1 over-expression protected against oxidative stress caused by depletion of the intracellular antioxidant glutathione (GHS) and against effectors of GHS depletion that affect the mitochondrial membrane integrity like truncated BH3-interacting domain death agonist and 12/15-lipoxygenase. Gdap1 knockdown, in contrast, increased the susceptibility of motor neuron-like NSC34 cells against GHS depletion. Over-expression of wild-type GDAP1, but not of GDAP1 with recessively inherited mutations that cause disease and reduce fission activity, increased the total cellular GHS content and the mitochondrial membrane potential up to a level where it apparently limits mitochondrial respiration, leading to reduced mitochondrial Ca2+ uptake and superoxide production. Fibroblasts from autosomal-recessive CMT4A patients had reduced GDAP1 levels, reduced GHS concentration and a reduced mitochondrial membrane potential. Thus, our results suggest that the potential GST GDAP1 is implicated in the control of the cellular GHS content and mitochondrial activity, suggesting an involvement of oxidative stress in the pathogenesis of CMT4A.</description><subject>Biological and medical sciences</subject><subject>Cell Line</subject><subject>Charcot-Marie-Tooth Disease - genetics</subject><subject>Charcot-Marie-Tooth Disease - metabolism</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Glutathione - metabolism</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Membrane Potential, Mitochondrial</subject><subject>Mitochondria - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurology</subject><subject>Oxidative Stress</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctq5DAQRUWYkHQem3zAoM0wEHBSsiTbyq7pPCEhWXTWRpbkWINtOZK8mL-Pmu4kuxkoKKg6VF3uReiMwAUBQS-74e1Sa8847KEFYQVkOVT0B1qAKFhWCCgO0VEIfwBIwWh5gA5zIgpOARZoWnXSKxezJ-mtydbOxQ5rG4wMBq-e1mx5he-uly8E21H5zTRgZfp-7qXHb_0cZeysGw2Wo8axM3iw0anOjdpb2ePBDI2XaT25aMaYRidov5V9MKe7foxeb2_Wq_vs8fnuYbV8zBSrIGZ5bhjhrW61ohyEJG0jCmoakLppQQglFCupYEA5VyUrqzwV0UWjTFNWhtFj9Ht7d_LufTYh1oMNG-VJjZtDLZJHwKDk_ycJEZQzXiXyfEsq70Lwpq0nbwfp_9YE6k0UdYqi3kaR4J-7s3MzGP2FfnqfgF87QAYl-zb5pGz45jhnVSXKb87N078efgCFFJ6q</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Noack, Rebecca</creator><creator>Frede, Svenja</creator><creator>Albrecht, Philipp</creator><creator>Henke, Nadine</creator><creator>Pfeiffer, Annika</creator><creator>Knoll, Katrin</creator><creator>Dehmel, Thomas</creator><creator>Meyer zu Hörste, Gerd</creator><creator>Stettner, Mark</creator><creator>Kieseier, Bernd C.</creator><creator>Summer, Holger</creator><creator>Golz, Stefan</creator><creator>Kochanski, Andrzej</creator><creator>Wiedau-Pazos, Martina</creator><creator>Arnold, Susanne</creator><creator>Lewerenz, Jan</creator><creator>Methner, Axel</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20120101</creationdate><title>Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential</title><author>Noack, Rebecca ; Frede, Svenja ; Albrecht, Philipp ; Henke, Nadine ; Pfeiffer, Annika ; Knoll, Katrin ; Dehmel, Thomas ; Meyer zu Hörste, Gerd ; Stettner, Mark ; Kieseier, Bernd C. ; Summer, Holger ; Golz, Stefan ; Kochanski, Andrzej ; Wiedau-Pazos, Martina ; Arnold, Susanne ; Lewerenz, Jan ; Methner, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-22e415fdfdc3509a1fb963eb0adbf099c9c473940355c747827821d6bceb78e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biological and medical sciences</topic><topic>Cell Line</topic><topic>Charcot-Marie-Tooth Disease - genetics</topic><topic>Charcot-Marie-Tooth Disease - metabolism</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Glutathione - metabolism</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Membrane Potential, Mitochondrial</topic><topic>Mitochondria - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurology</topic><topic>Oxidative Stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noack, Rebecca</creatorcontrib><creatorcontrib>Frede, Svenja</creatorcontrib><creatorcontrib>Albrecht, Philipp</creatorcontrib><creatorcontrib>Henke, Nadine</creatorcontrib><creatorcontrib>Pfeiffer, Annika</creatorcontrib><creatorcontrib>Knoll, Katrin</creatorcontrib><creatorcontrib>Dehmel, Thomas</creatorcontrib><creatorcontrib>Meyer zu Hörste, Gerd</creatorcontrib><creatorcontrib>Stettner, Mark</creatorcontrib><creatorcontrib>Kieseier, Bernd C.</creatorcontrib><creatorcontrib>Summer, Holger</creatorcontrib><creatorcontrib>Golz, Stefan</creatorcontrib><creatorcontrib>Kochanski, Andrzej</creatorcontrib><creatorcontrib>Wiedau-Pazos, Martina</creatorcontrib><creatorcontrib>Arnold, Susanne</creatorcontrib><creatorcontrib>Lewerenz, Jan</creatorcontrib><creatorcontrib>Methner, Axel</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noack, Rebecca</au><au>Frede, Svenja</au><au>Albrecht, Philipp</au><au>Henke, Nadine</au><au>Pfeiffer, Annika</au><au>Knoll, Katrin</au><au>Dehmel, Thomas</au><au>Meyer zu Hörste, Gerd</au><au>Stettner, Mark</au><au>Kieseier, Bernd C.</au><au>Summer, Holger</au><au>Golz, Stefan</au><au>Kochanski, Andrzej</au><au>Wiedau-Pazos, Martina</au><au>Arnold, Susanne</au><au>Lewerenz, Jan</au><au>Methner, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>21</volume><issue>1</issue><spage>150</spage><epage>162</epage><pages>150-162</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Mutations in GDAP1 lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease, CMT), indicating that GDAP1 is essential for the viability of cells in the peripheral nervous system. GDAP1 contains domains characteristic of glutathione-S-transferases (GSTs), is located in the outer mitochondrial membrane and induces fragmentation of mitochondria. We found GDAP1 upregulated in neuronal HT22 cells selected for resistance against oxidative stress. GDAP1 over-expression protected against oxidative stress caused by depletion of the intracellular antioxidant glutathione (GHS) and against effectors of GHS depletion that affect the mitochondrial membrane integrity like truncated BH3-interacting domain death agonist and 12/15-lipoxygenase. Gdap1 knockdown, in contrast, increased the susceptibility of motor neuron-like NSC34 cells against GHS depletion. Over-expression of wild-type GDAP1, but not of GDAP1 with recessively inherited mutations that cause disease and reduce fission activity, increased the total cellular GHS content and the mitochondrial membrane potential up to a level where it apparently limits mitochondrial respiration, leading to reduced mitochondrial Ca2+ uptake and superoxide production. Fibroblasts from autosomal-recessive CMT4A patients had reduced GDAP1 levels, reduced GHS concentration and a reduced mitochondrial membrane potential. Thus, our results suggest that the potential GST GDAP1 is implicated in the control of the cellular GHS content and mitochondrial activity, suggesting an involvement of oxidative stress in the pathogenesis of CMT4A.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>21965300</pmid><doi>10.1093/hmg/ddr450</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2012-01, Vol.21 (1), p.150-162 |
issn | 0964-6906 1460-2083 |
language | eng |
recordid | cdi_proquest_miscellaneous_920804075 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Biological and medical sciences Cell Line Charcot-Marie-Tooth Disease - genetics Charcot-Marie-Tooth Disease - metabolism Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Fundamental and applied biological sciences. Psychology Genetics of eukaryotes. Biological and molecular evolution Glutathione - metabolism Humans Medical sciences Membrane Potential, Mitochondrial Mitochondria - metabolism Molecular and cellular biology Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neurology Oxidative Stress |
title | Charcot-Marie-Tooth disease CMT4A: GDAP1 increases cellular glutathione and the mitochondrial membrane potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charcot-Marie-Tooth%20disease%20CMT4A:%20GDAP1%20increases%20cellular%20glutathione%20and%20the%20mitochondrial%20membrane%20potential&rft.jtitle=Human%20molecular%20genetics&rft.au=Noack,%20Rebecca&rft.date=2012-01-01&rft.volume=21&rft.issue=1&rft.spage=150&rft.epage=162&rft.pages=150-162&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddr450&rft_dat=%3Cproquest_cross%3E911935458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911935458&rft_id=info:pmid/21965300&rft_oup_id=10.1093/hmg/ddr450&rfr_iscdi=true |