Eight (and a half) deadly sins of spatial analysis
Biogeography is spatial by nature. Over the past 20 years, the literature related to the analysis of spatially structured data has exploded, much of it focused on a perceived problem of spatial autocorrelation and ways to deal with it. However, there are a number of other issues that permeate the bi...
Gespeichert in:
Veröffentlicht in: | Journal of biogeography 2012-01, Vol.39 (1), p.1-9 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of biogeography |
container_volume | 39 |
creator | Hawkins, Bradford A. |
description | Biogeography is spatial by nature. Over the past 20 years, the literature related to the analysis of spatially structured data has exploded, much of it focused on a perceived problem of spatial autocorrelation and ways to deal with it. However, there are a number of other issues that permeate the biogeographical and macroecological literature that have become entangled in the spatial autocorrelation web. In this piece I discuss some of the assumptions that are often made in the analysis of spatially structured data that can lead to misunderstandings about the nature of spatial data, the methods used to analyse them, and how results can be interpreted. |
doi_str_mv | 10.1111/j.1365-2699.2011.02637.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920803653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4312991151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5277-354f9d8f2365d2258f4dd06c51590efdd705f091136fc8cea8765ef8ef03f7e63</originalsourceid><addsrcrecordid>eNqNkM1KAzEYRYMoWKvvEHChLmb8kjR_Cxda2qqIuqgIbkKYJHbqtFMnLbZvb8ZKF67MJoHcc7kchDCBnKRzOc0JEzyjQuucAiE5UMFkvt5Dnd3HPuoAA54BlXCIjmKcAoDmrNdBdFC-T5b43M4dtnhiq3CBnbeu2uBYziOuA44Luyxthe3cVptYxmN0EGwV_cnv3UUvw8G4f5s9PI3u-tcPWcGplBnjvaCdCjStcJRyFXrOgSg44Rp8cE4CD6BJWhkKVXirpOA-KB-ABekF66Kzbe-iqT9XPi7NrIyFryo79_UqGk1BQSpnKXn6JzmtV02aGw1RQvQUZZymlNqmiqaOsfHBLJpyZpuNIWBal2ZqWmWmVWZal-bHpVkn9GqLfpWV3_ybM_c3d-0r8dmWL-PSr3e8bT6MkExy8_o4Mnoshvr-7TmVfQMXaYaB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1866482352</pqid></control><display><type>article</type><title>Eight (and a half) deadly sins of spatial analysis</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hawkins, Bradford A.</creator><creatorcontrib>Hawkins, Bradford A.</creatorcontrib><description>Biogeography is spatial by nature. Over the past 20 years, the literature related to the analysis of spatially structured data has exploded, much of it focused on a perceived problem of spatial autocorrelation and ways to deal with it. However, there are a number of other issues that permeate the biogeographical and macroecological literature that have become entangled in the spatial autocorrelation web. In this piece I discuss some of the assumptions that are often made in the analysis of spatially structured data that can lead to misunderstandings about the nature of spatial data, the methods used to analyse them, and how results can be interpreted.</description><identifier>ISSN: 0305-0270</identifier><identifier>EISSN: 1365-2699</identifier><identifier>DOI: 10.1111/j.1365-2699.2011.02637.x</identifier><identifier>CODEN: JBIODN</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Biogeographical analysis ; Biogeography ; diversity gradients ; geographical ecology ; macroecology ; multiple regression ; regression trees ; spatial analysis ; spatial autocorrelation ; spatial regression</subject><ispartof>Journal of biogeography, 2012-01, Vol.39 (1), p.1-9</ispartof><rights>2011 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5277-354f9d8f2365d2258f4dd06c51590efdd705f091136fc8cea8765ef8ef03f7e63</citedby><cites>FETCH-LOGICAL-c5277-354f9d8f2365d2258f4dd06c51590efdd705f091136fc8cea8765ef8ef03f7e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2699.2011.02637.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2699.2011.02637.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hawkins, Bradford A.</creatorcontrib><title>Eight (and a half) deadly sins of spatial analysis</title><title>Journal of biogeography</title><description>Biogeography is spatial by nature. Over the past 20 years, the literature related to the analysis of spatially structured data has exploded, much of it focused on a perceived problem of spatial autocorrelation and ways to deal with it. However, there are a number of other issues that permeate the biogeographical and macroecological literature that have become entangled in the spatial autocorrelation web. In this piece I discuss some of the assumptions that are often made in the analysis of spatially structured data that can lead to misunderstandings about the nature of spatial data, the methods used to analyse them, and how results can be interpreted.</description><subject>Biogeographical analysis</subject><subject>Biogeography</subject><subject>diversity gradients</subject><subject>geographical ecology</subject><subject>macroecology</subject><subject>multiple regression</subject><subject>regression trees</subject><subject>spatial analysis</subject><subject>spatial autocorrelation</subject><subject>spatial regression</subject><issn>0305-0270</issn><issn>1365-2699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KAzEYRYMoWKvvEHChLmb8kjR_Cxda2qqIuqgIbkKYJHbqtFMnLbZvb8ZKF67MJoHcc7kchDCBnKRzOc0JEzyjQuucAiE5UMFkvt5Dnd3HPuoAA54BlXCIjmKcAoDmrNdBdFC-T5b43M4dtnhiq3CBnbeu2uBYziOuA44Luyxthe3cVptYxmN0EGwV_cnv3UUvw8G4f5s9PI3u-tcPWcGplBnjvaCdCjStcJRyFXrOgSg44Rp8cE4CD6BJWhkKVXirpOA-KB-ABekF66Kzbe-iqT9XPi7NrIyFryo79_UqGk1BQSpnKXn6JzmtV02aGw1RQvQUZZymlNqmiqaOsfHBLJpyZpuNIWBal2ZqWmWmVWZal-bHpVkn9GqLfpWV3_ybM_c3d-0r8dmWL-PSr3e8bT6MkExy8_o4Mnoshvr-7TmVfQMXaYaB</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Hawkins, Bradford A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201201</creationdate><title>Eight (and a half) deadly sins of spatial analysis</title><author>Hawkins, Bradford A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5277-354f9d8f2365d2258f4dd06c51590efdd705f091136fc8cea8765ef8ef03f7e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biogeographical analysis</topic><topic>Biogeography</topic><topic>diversity gradients</topic><topic>geographical ecology</topic><topic>macroecology</topic><topic>multiple regression</topic><topic>regression trees</topic><topic>spatial analysis</topic><topic>spatial autocorrelation</topic><topic>spatial regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hawkins, Bradford A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hawkins, Bradford A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eight (and a half) deadly sins of spatial analysis</atitle><jtitle>Journal of biogeography</jtitle><date>2012-01</date><risdate>2012</risdate><volume>39</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0305-0270</issn><eissn>1365-2699</eissn><coden>JBIODN</coden><abstract>Biogeography is spatial by nature. Over the past 20 years, the literature related to the analysis of spatially structured data has exploded, much of it focused on a perceived problem of spatial autocorrelation and ways to deal with it. However, there are a number of other issues that permeate the biogeographical and macroecological literature that have become entangled in the spatial autocorrelation web. In this piece I discuss some of the assumptions that are often made in the analysis of spatially structured data that can lead to misunderstandings about the nature of spatial data, the methods used to analyse them, and how results can be interpreted.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2699.2011.02637.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0270 |
ispartof | Journal of biogeography, 2012-01, Vol.39 (1), p.1-9 |
issn | 0305-0270 1365-2699 |
language | eng |
recordid | cdi_proquest_miscellaneous_920803653 |
source | Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete |
subjects | Biogeographical analysis Biogeography diversity gradients geographical ecology macroecology multiple regression regression trees spatial analysis spatial autocorrelation spatial regression |
title | Eight (and a half) deadly sins of spatial analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eight%20(and%20a%20half)%20deadly%20sins%20of%20spatial%20analysis&rft.jtitle=Journal%20of%20biogeography&rft.au=Hawkins,%20Bradford%20A.&rft.date=2012-01&rft.volume=39&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0305-0270&rft.eissn=1365-2699&rft.coden=JBIODN&rft_id=info:doi/10.1111/j.1365-2699.2011.02637.x&rft_dat=%3Cproquest_cross%3E4312991151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1866482352&rft_id=info:pmid/&rfr_iscdi=true |