Eight (and a half) deadly sins of spatial analysis

Biogeography is spatial by nature. Over the past 20 years, the literature related to the analysis of spatially structured data has exploded, much of it focused on a perceived problem of spatial autocorrelation and ways to deal with it. However, there are a number of other issues that permeate the bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biogeography 2012-01, Vol.39 (1), p.1-9
1. Verfasser: Hawkins, Bradford A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 1
container_title Journal of biogeography
container_volume 39
creator Hawkins, Bradford A.
description Biogeography is spatial by nature. Over the past 20 years, the literature related to the analysis of spatially structured data has exploded, much of it focused on a perceived problem of spatial autocorrelation and ways to deal with it. However, there are a number of other issues that permeate the biogeographical and macroecological literature that have become entangled in the spatial autocorrelation web. In this piece I discuss some of the assumptions that are often made in the analysis of spatially structured data that can lead to misunderstandings about the nature of spatial data, the methods used to analyse them, and how results can be interpreted.
doi_str_mv 10.1111/j.1365-2699.2011.02637.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920803653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4312991151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5277-354f9d8f2365d2258f4dd06c51590efdd705f091136fc8cea8765ef8ef03f7e63</originalsourceid><addsrcrecordid>eNqNkM1KAzEYRYMoWKvvEHChLmb8kjR_Cxda2qqIuqgIbkKYJHbqtFMnLbZvb8ZKF67MJoHcc7kchDCBnKRzOc0JEzyjQuucAiE5UMFkvt5Dnd3HPuoAA54BlXCIjmKcAoDmrNdBdFC-T5b43M4dtnhiq3CBnbeu2uBYziOuA44Luyxthe3cVptYxmN0EGwV_cnv3UUvw8G4f5s9PI3u-tcPWcGplBnjvaCdCjStcJRyFXrOgSg44Rp8cE4CD6BJWhkKVXirpOA-KB-ABekF66Kzbe-iqT9XPi7NrIyFryo79_UqGk1BQSpnKXn6JzmtV02aGw1RQvQUZZymlNqmiqaOsfHBLJpyZpuNIWBal2ZqWmWmVWZal-bHpVkn9GqLfpWV3_ybM_c3d-0r8dmWL-PSr3e8bT6MkExy8_o4Mnoshvr-7TmVfQMXaYaB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1866482352</pqid></control><display><type>article</type><title>Eight (and a half) deadly sins of spatial analysis</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hawkins, Bradford A.</creator><creatorcontrib>Hawkins, Bradford A.</creatorcontrib><description>Biogeography is spatial by nature. Over the past 20 years, the literature related to the analysis of spatially structured data has exploded, much of it focused on a perceived problem of spatial autocorrelation and ways to deal with it. However, there are a number of other issues that permeate the biogeographical and macroecological literature that have become entangled in the spatial autocorrelation web. In this piece I discuss some of the assumptions that are often made in the analysis of spatially structured data that can lead to misunderstandings about the nature of spatial data, the methods used to analyse them, and how results can be interpreted.</description><identifier>ISSN: 0305-0270</identifier><identifier>EISSN: 1365-2699</identifier><identifier>DOI: 10.1111/j.1365-2699.2011.02637.x</identifier><identifier>CODEN: JBIODN</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Biogeographical analysis ; Biogeography ; diversity gradients ; geographical ecology ; macroecology ; multiple regression ; regression trees ; spatial analysis ; spatial autocorrelation ; spatial regression</subject><ispartof>Journal of biogeography, 2012-01, Vol.39 (1), p.1-9</ispartof><rights>2011 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5277-354f9d8f2365d2258f4dd06c51590efdd705f091136fc8cea8765ef8ef03f7e63</citedby><cites>FETCH-LOGICAL-c5277-354f9d8f2365d2258f4dd06c51590efdd705f091136fc8cea8765ef8ef03f7e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2699.2011.02637.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2699.2011.02637.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hawkins, Bradford A.</creatorcontrib><title>Eight (and a half) deadly sins of spatial analysis</title><title>Journal of biogeography</title><description>Biogeography is spatial by nature. Over the past 20 years, the literature related to the analysis of spatially structured data has exploded, much of it focused on a perceived problem of spatial autocorrelation and ways to deal with it. However, there are a number of other issues that permeate the biogeographical and macroecological literature that have become entangled in the spatial autocorrelation web. In this piece I discuss some of the assumptions that are often made in the analysis of spatially structured data that can lead to misunderstandings about the nature of spatial data, the methods used to analyse them, and how results can be interpreted.</description><subject>Biogeographical analysis</subject><subject>Biogeography</subject><subject>diversity gradients</subject><subject>geographical ecology</subject><subject>macroecology</subject><subject>multiple regression</subject><subject>regression trees</subject><subject>spatial analysis</subject><subject>spatial autocorrelation</subject><subject>spatial regression</subject><issn>0305-0270</issn><issn>1365-2699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KAzEYRYMoWKvvEHChLmb8kjR_Cxda2qqIuqgIbkKYJHbqtFMnLbZvb8ZKF67MJoHcc7kchDCBnKRzOc0JEzyjQuucAiE5UMFkvt5Dnd3HPuoAA54BlXCIjmKcAoDmrNdBdFC-T5b43M4dtnhiq3CBnbeu2uBYziOuA44Luyxthe3cVptYxmN0EGwV_cnv3UUvw8G4f5s9PI3u-tcPWcGplBnjvaCdCjStcJRyFXrOgSg44Rp8cE4CD6BJWhkKVXirpOA-KB-ABekF66Kzbe-iqT9XPi7NrIyFryo79_UqGk1BQSpnKXn6JzmtV02aGw1RQvQUZZymlNqmiqaOsfHBLJpyZpuNIWBal2ZqWmWmVWZal-bHpVkn9GqLfpWV3_ybM_c3d-0r8dmWL-PSr3e8bT6MkExy8_o4Mnoshvr-7TmVfQMXaYaB</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Hawkins, Bradford A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201201</creationdate><title>Eight (and a half) deadly sins of spatial analysis</title><author>Hawkins, Bradford A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5277-354f9d8f2365d2258f4dd06c51590efdd705f091136fc8cea8765ef8ef03f7e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Biogeographical analysis</topic><topic>Biogeography</topic><topic>diversity gradients</topic><topic>geographical ecology</topic><topic>macroecology</topic><topic>multiple regression</topic><topic>regression trees</topic><topic>spatial analysis</topic><topic>spatial autocorrelation</topic><topic>spatial regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hawkins, Bradford A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hawkins, Bradford A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eight (and a half) deadly sins of spatial analysis</atitle><jtitle>Journal of biogeography</jtitle><date>2012-01</date><risdate>2012</risdate><volume>39</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0305-0270</issn><eissn>1365-2699</eissn><coden>JBIODN</coden><abstract>Biogeography is spatial by nature. Over the past 20 years, the literature related to the analysis of spatially structured data has exploded, much of it focused on a perceived problem of spatial autocorrelation and ways to deal with it. However, there are a number of other issues that permeate the biogeographical and macroecological literature that have become entangled in the spatial autocorrelation web. In this piece I discuss some of the assumptions that are often made in the analysis of spatially structured data that can lead to misunderstandings about the nature of spatial data, the methods used to analyse them, and how results can be interpreted.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2699.2011.02637.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-0270
ispartof Journal of biogeography, 2012-01, Vol.39 (1), p.1-9
issn 0305-0270
1365-2699
language eng
recordid cdi_proquest_miscellaneous_920803653
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete
subjects Biogeographical analysis
Biogeography
diversity gradients
geographical ecology
macroecology
multiple regression
regression trees
spatial analysis
spatial autocorrelation
spatial regression
title Eight (and a half) deadly sins of spatial analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T15%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eight%20(and%20a%20half)%20deadly%20sins%20of%20spatial%20analysis&rft.jtitle=Journal%20of%20biogeography&rft.au=Hawkins,%20Bradford%20A.&rft.date=2012-01&rft.volume=39&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0305-0270&rft.eissn=1365-2699&rft.coden=JBIODN&rft_id=info:doi/10.1111/j.1365-2699.2011.02637.x&rft_dat=%3Cproquest_cross%3E4312991151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1866482352&rft_id=info:pmid/&rfr_iscdi=true