Early warnings of unknown nonlinear shifts: a nonparametric approach

Early warning signals (EWS) of regime shifts are challenging in cases where the true natural data-generating process is uncertain. Nonparametric drift-diffusion-jump models address this problem by fitting a general model that can approximate a wide range of data-generating processes. Drift measures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2011-12, Vol.92 (12), p.2196-2201
Hauptverfasser: Carpenter, S. R, Brock, W. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2201
container_issue 12
container_start_page 2196
container_title Ecology (Durham)
container_volume 92
creator Carpenter, S. R
Brock, W. A
description Early warning signals (EWS) of regime shifts are challenging in cases where the true natural data-generating process is uncertain. Nonparametric drift-diffusion-jump models address this problem by fitting a general model that can approximate a wide range of data-generating processes. Drift measures the local rate of change. Diffusion measures relatively small shocks that occur at each time step. Jumps are large intermittent shocks. Total variance combines the contributions of diffusion and jumps. Nonparametric methods are well suited to emerging technology for automated, high-frequency sensors. Total variance is the most precisely measured indicator. Jump intensity appears to be a useful EWS. Estimates of the drift are highly uncertain unless long time series with many regime shifts are available. EWS computed from drift estimates (such as autocorrelation coefficients or return rates) have low precision and should be used with caution. Nonetheless, in the current state of knowledge, it is premature to disregard any potential EWS.
doi_str_mv 10.1890/11-0716.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_920803569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23143877</jstor_id><sourcerecordid>23143877</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5576-3d84e54ff2ad2c4a53bf763ceda98e2af99a6fdc3330aa418a2cd5f9c6934edd3</originalsourceid><addsrcrecordid>eNqNkk2P0zAQhi0EYkvhwA8AIhBCHLJ47NixuaFSPqSVOMAeOFmzjr2bkjrBTlT673GVwiI-JHwZyfPM-9ozQ8h9oKegNH0BUNIa5CncIAvQXJcaanqTLCgFVmop1Am5k9KG5gOVuk1OGOOCgVAL8nqNsdsXO4yhDZep6H0xhS-h34Ui9KFrg8NYpKvWj-llgYe7ASNu3RhbW-AwxB7t1V1yy2OX3L1jXJLzN-tPq3fl2Ye371evzkoUopYlb1TlROU9w4bZCgW_8LXk1jWolWPotUbpG8s5p4gVKGS2EV5bqXnlmoYvybNZN9t-nVwazbZN1nUdBtdPyWjGQakaxH-QVFEusvCSPP6N3PRTDPkbRgPTWtagMvR8hmzsU4rOmyG2W4x7A9QcRmAAzGEEBjL78Cg4XWxd85P80fMMPD0CmCx2PmKwbbrmxOFd6sDJmdu1ndv_29GsV58ZBdAMGAMtc-GDuXCTxj5eC3OouKrrnH805z32Bi9jNj__mBVkXg-tKsky8WQmcNwPfTAu4S9-Q-PN-G38O_VHP74D-F_F3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912996718</pqid></control><display><type>article</type><title>Early warnings of unknown nonlinear shifts: a nonparametric approach</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Carpenter, S. R ; Brock, W. A</creator><contributor>Speirs, DC</contributor><creatorcontrib>Carpenter, S. R ; Brock, W. A ; Speirs, DC</creatorcontrib><description>Early warning signals (EWS) of regime shifts are challenging in cases where the true natural data-generating process is uncertain. Nonparametric drift-diffusion-jump models address this problem by fitting a general model that can approximate a wide range of data-generating processes. Drift measures the local rate of change. Diffusion measures relatively small shocks that occur at each time step. Jumps are large intermittent shocks. Total variance combines the contributions of diffusion and jumps. Nonparametric methods are well suited to emerging technology for automated, high-frequency sensors. Total variance is the most precisely measured indicator. Jump intensity appears to be a useful EWS. Estimates of the drift are highly uncertain unless long time series with many regime shifts are available. EWS computed from drift estimates (such as autocorrelation coefficients or return rates) have low precision and should be used with caution. Nonetheless, in the current state of knowledge, it is premature to disregard any potential EWS.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/11-0716.1</identifier><identifier>PMID: 22352158</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Washington, DC: Ecological Society of America</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Autocorrelation ; Biological and medical sciences ; diffusion ; drift ; early warning ; Ecology ; Economic models ; Ecosystem ; Ecosystems ; Estimates ; Eutrophication ; Freshwater ecology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Interval estimators ; jump ; Models, Biological ; Models, Statistical ; Monte Carlo Method ; nonparametric ; Phosphorus ; regime shift ; Standard deviation ; Statistical variance ; Statistics, Nonparametric ; technology ; Time series ; time series analysis ; Uncertainty ; variance ; Warnings</subject><ispartof>Ecology (Durham), 2011-12, Vol.92 (12), p.2196-2201</ispartof><rights>Copyright © 2011 The Ecological Society of America</rights><rights>2011 by the Ecological Society of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Ecological Society of America Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5576-3d84e54ff2ad2c4a53bf763ceda98e2af99a6fdc3330aa418a2cd5f9c6934edd3</citedby><cites>FETCH-LOGICAL-a5576-3d84e54ff2ad2c4a53bf763ceda98e2af99a6fdc3330aa418a2cd5f9c6934edd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23143877$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23143877$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,1418,27929,27930,45579,45580,58022,58255</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25356988$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22352158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Speirs, DC</contributor><creatorcontrib>Carpenter, S. R</creatorcontrib><creatorcontrib>Brock, W. A</creatorcontrib><title>Early warnings of unknown nonlinear shifts: a nonparametric approach</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Early warning signals (EWS) of regime shifts are challenging in cases where the true natural data-generating process is uncertain. Nonparametric drift-diffusion-jump models address this problem by fitting a general model that can approximate a wide range of data-generating processes. Drift measures the local rate of change. Diffusion measures relatively small shocks that occur at each time step. Jumps are large intermittent shocks. Total variance combines the contributions of diffusion and jumps. Nonparametric methods are well suited to emerging technology for automated, high-frequency sensors. Total variance is the most precisely measured indicator. Jump intensity appears to be a useful EWS. Estimates of the drift are highly uncertain unless long time series with many regime shifts are available. EWS computed from drift estimates (such as autocorrelation coefficients or return rates) have low precision and should be used with caution. Nonetheless, in the current state of knowledge, it is premature to disregard any potential EWS.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Autocorrelation</subject><subject>Biological and medical sciences</subject><subject>diffusion</subject><subject>drift</subject><subject>early warning</subject><subject>Ecology</subject><subject>Economic models</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Estimates</subject><subject>Eutrophication</subject><subject>Freshwater ecology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Interval estimators</subject><subject>jump</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>nonparametric</subject><subject>Phosphorus</subject><subject>regime shift</subject><subject>Standard deviation</subject><subject>Statistical variance</subject><subject>Statistics, Nonparametric</subject><subject>technology</subject><subject>Time series</subject><subject>time series analysis</subject><subject>Uncertainty</subject><subject>variance</subject><subject>Warnings</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk2P0zAQhi0EYkvhwA8AIhBCHLJ47NixuaFSPqSVOMAeOFmzjr2bkjrBTlT673GVwiI-JHwZyfPM-9ozQ8h9oKegNH0BUNIa5CncIAvQXJcaanqTLCgFVmop1Am5k9KG5gOVuk1OGOOCgVAL8nqNsdsXO4yhDZep6H0xhS-h34Ui9KFrg8NYpKvWj-llgYe7ASNu3RhbW-AwxB7t1V1yy2OX3L1jXJLzN-tPq3fl2Ye371evzkoUopYlb1TlROU9w4bZCgW_8LXk1jWolWPotUbpG8s5p4gVKGS2EV5bqXnlmoYvybNZN9t-nVwazbZN1nUdBtdPyWjGQakaxH-QVFEusvCSPP6N3PRTDPkbRgPTWtagMvR8hmzsU4rOmyG2W4x7A9QcRmAAzGEEBjL78Cg4XWxd85P80fMMPD0CmCx2PmKwbbrmxOFd6sDJmdu1ndv_29GsV58ZBdAMGAMtc-GDuXCTxj5eC3OouKrrnH805z32Bi9jNj__mBVkXg-tKsky8WQmcNwPfTAu4S9-Q-PN-G38O_VHP74D-F_F3g</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Carpenter, S. R</creator><creator>Brock, W. A</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201112</creationdate><title>Early warnings of unknown nonlinear shifts: a nonparametric approach</title><author>Carpenter, S. R ; Brock, W. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5576-3d84e54ff2ad2c4a53bf763ceda98e2af99a6fdc3330aa418a2cd5f9c6934edd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Autocorrelation</topic><topic>Biological and medical sciences</topic><topic>diffusion</topic><topic>drift</topic><topic>early warning</topic><topic>Ecology</topic><topic>Economic models</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Estimates</topic><topic>Eutrophication</topic><topic>Freshwater ecology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Interval estimators</topic><topic>jump</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>nonparametric</topic><topic>Phosphorus</topic><topic>regime shift</topic><topic>Standard deviation</topic><topic>Statistical variance</topic><topic>Statistics, Nonparametric</topic><topic>technology</topic><topic>Time series</topic><topic>time series analysis</topic><topic>Uncertainty</topic><topic>variance</topic><topic>Warnings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carpenter, S. R</creatorcontrib><creatorcontrib>Brock, W. A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carpenter, S. R</au><au>Brock, W. A</au><au>Speirs, DC</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early warnings of unknown nonlinear shifts: a nonparametric approach</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2011-12</date><risdate>2011</risdate><volume>92</volume><issue>12</issue><spage>2196</spage><epage>2201</epage><pages>2196-2201</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>Early warning signals (EWS) of regime shifts are challenging in cases where the true natural data-generating process is uncertain. Nonparametric drift-diffusion-jump models address this problem by fitting a general model that can approximate a wide range of data-generating processes. Drift measures the local rate of change. Diffusion measures relatively small shocks that occur at each time step. Jumps are large intermittent shocks. Total variance combines the contributions of diffusion and jumps. Nonparametric methods are well suited to emerging technology for automated, high-frequency sensors. Total variance is the most precisely measured indicator. Jump intensity appears to be a useful EWS. Estimates of the drift are highly uncertain unless long time series with many regime shifts are available. EWS computed from drift estimates (such as autocorrelation coefficients or return rates) have low precision and should be used with caution. Nonetheless, in the current state of knowledge, it is premature to disregard any potential EWS.</abstract><cop>Washington, DC</cop><pub>Ecological Society of America</pub><pmid>22352158</pmid><doi>10.1890/11-0716.1</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 2011-12, Vol.92 (12), p.2196-2201
issn 0012-9658
1939-9170
language eng
recordid cdi_proquest_miscellaneous_920803569
source MEDLINE; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing
subjects Animal and plant ecology
Animal, plant and microbial ecology
Autocorrelation
Biological and medical sciences
diffusion
drift
early warning
Ecology
Economic models
Ecosystem
Ecosystems
Estimates
Eutrophication
Freshwater ecology
Fundamental and applied biological sciences. Psychology
General aspects
Interval estimators
jump
Models, Biological
Models, Statistical
Monte Carlo Method
nonparametric
Phosphorus
regime shift
Standard deviation
Statistical variance
Statistics, Nonparametric
technology
Time series
time series analysis
Uncertainty
variance
Warnings
title Early warnings of unknown nonlinear shifts: a nonparametric approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A31%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20warnings%20of%20unknown%20nonlinear%20shifts:%20a%20nonparametric%20approach&rft.jtitle=Ecology%20(Durham)&rft.au=Carpenter,%20S.%20R&rft.date=2011-12&rft.volume=92&rft.issue=12&rft.spage=2196&rft.epage=2201&rft.pages=2196-2201&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/11-0716.1&rft_dat=%3Cjstor_proqu%3E23143877%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912996718&rft_id=info:pmid/22352158&rft_jstor_id=23143877&rfr_iscdi=true