Does including physiology improve species distribution model predictions of responses to recent climate change?
Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific e...
Gespeichert in:
Veröffentlicht in: | Ecology (Durham) 2011-12, Vol.92 (12), p.2214-2221 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2221 |
---|---|
container_issue | 12 |
container_start_page | 2214 |
container_title | Ecology (Durham) |
container_volume | 92 |
creator | Buckley, Lauren B Waaser, Stephanie A MacLean, Heidi J Fox, Richard |
description | Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific estimates of LDT based on laboratory experiments can improve the ability of SDMs to predict the distribution shifts of six U.K. butterflies in response to recent climate warming. We find that species-specific and constant (5°C) LDT degree-day models perform similarly at predicting distributions during the period of 1970-1982. However, when the models for the 1970-1982 period are projected to predict distributions in 1995-1999 and 2000-2004, species-specific LDT degree-day models modestly outperform constant LDT degree-day models. Our results suggest that, while including species-specific physiology in correlative models may enhance predictions of species' distribution responses to climate change, more detailed models may be needed to adequately account for interspecific physiological differences. |
doi_str_mv | 10.1890/11-0066.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_920802914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23143880</jstor_id><sourcerecordid>23143880</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5574-5327563f9e0d6997c303f997e57f82f6113d9b912e047c8ba21a399780b978843</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEotvCgR8ARCCEOKR47LVjnxBayodUiQP0wMlyHGfrVTYOdkLJv2dCllZCRcIHf83jd_x6nGWPgJyCVOQ1QEGIEKdwJ1uBYqpQUJK72YoQoIUSXB5lxyntCDZYy_vZEaWMUxCwysK74FLuO9uOte-2eX85JR_asJ1yv-9j-OHy1DvrEap9GqKvxsGHLt-H2rV5H13t7byR8tDk0aUep8gOARfWdUNuW783g8vtpem27s2D7F5j2uQeHsaT7OL92dfNx-L884dPm7fnheG8XBec0ZIL1ihHaqFUaRnBhSodLxtJGwHAalUpoI6sSysrQ8EwjEtSYSfX7CR7ueiih--jS4Pe-2Rd25rOhTFpRRlIWVL-HySRhCqYNZ_9Re7CGDu0ofEmSomSCoReLZCNIaXoGt1HfIE4aSB6rpYG0HO1NCD75CA4VntXX5N_yoPAiwNgkjVtE01nfbrhOOP4OjMnFu7Kt276d0Z9tvlGCYCiQCn9benxcnCXhhBvhBnGpCQYf7rEGxO02UZMfvEFFQT-JFUqPvt9vhBmmLD42iVzq9NbqOtb9XWjh58D-wUzNNPa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912996726</pqid></control><display><type>article</type><title>Does including physiology improve species distribution model predictions of responses to recent climate change?</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Buckley, Lauren B ; Waaser, Stephanie A ; MacLean, Heidi J ; Fox, Richard</creator><contributor>Simpson, SJ</contributor><creatorcontrib>Buckley, Lauren B ; Waaser, Stephanie A ; MacLean, Heidi J ; Fox, Richard ; Simpson, SJ</creatorcontrib><description>Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific estimates of LDT based on laboratory experiments can improve the ability of SDMs to predict the distribution shifts of six U.K. butterflies in response to recent climate warming. We find that species-specific and constant (5°C) LDT degree-day models perform similarly at predicting distributions during the period of 1970-1982. However, when the models for the 1970-1982 period are projected to predict distributions in 1995-1999 and 2000-2004, species-specific LDT degree-day models modestly outperform constant LDT degree-day models. Our results suggest that, while including species-specific physiology in correlative models may enhance predictions of species' distribution responses to climate change, more detailed models may be needed to adequately account for interspecific physiological differences.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/11-0066.1</identifier><identifier>PMID: 22352161</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Washington, DC: Ecological Society of America</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Applied ecology ; biogeography ; Biological and medical sciences ; Butterflies ; Butterflies & moths ; Butterflies - physiology ; Climate Change ; Climate models ; Climatology. Bioclimatology. Climate change ; Correlation analysis ; degree-days ; Earth, ocean, space ; Ecological modeling ; Exact sciences and technology ; External geophysics ; Fundamental and applied biological sciences. Psychology ; General aspects ; global warming ; Heat sums ; hybrid models ; Insect ecology ; laboratory experimentation ; Larva - growth & development ; larval development ; lower developmental threshold ; Meteorology ; Modeling ; Models, Biological ; phenology ; physiology ; prediction ; Predictions ; range shifts ; Species ; species distribution models ; Temperature ; thermal constraints ; Thermoregulation ; United Kingdom ; voltinism</subject><ispartof>Ecology (Durham), 2011-12, Vol.92 (12), p.2214-2221</ispartof><rights>Copyright © 2011 The Ecological Society of America</rights><rights>2011 by the Ecological Society of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Ecological Society of America Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5574-5327563f9e0d6997c303f997e57f82f6113d9b912e047c8ba21a399780b978843</citedby><cites>FETCH-LOGICAL-a5574-5327563f9e0d6997c303f997e57f82f6113d9b912e047c8ba21a399780b978843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23143880$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23143880$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27903,27904,45553,45554,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25356991$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22352161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Simpson, SJ</contributor><creatorcontrib>Buckley, Lauren B</creatorcontrib><creatorcontrib>Waaser, Stephanie A</creatorcontrib><creatorcontrib>MacLean, Heidi J</creatorcontrib><creatorcontrib>Fox, Richard</creatorcontrib><title>Does including physiology improve species distribution model predictions of responses to recent climate change?</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific estimates of LDT based on laboratory experiments can improve the ability of SDMs to predict the distribution shifts of six U.K. butterflies in response to recent climate warming. We find that species-specific and constant (5°C) LDT degree-day models perform similarly at predicting distributions during the period of 1970-1982. However, when the models for the 1970-1982 period are projected to predict distributions in 1995-1999 and 2000-2004, species-specific LDT degree-day models modestly outperform constant LDT degree-day models. Our results suggest that, while including species-specific physiology in correlative models may enhance predictions of species' distribution responses to climate change, more detailed models may be needed to adequately account for interspecific physiological differences.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Applied ecology</subject><subject>biogeography</subject><subject>Biological and medical sciences</subject><subject>Butterflies</subject><subject>Butterflies & moths</subject><subject>Butterflies - physiology</subject><subject>Climate Change</subject><subject>Climate models</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Correlation analysis</subject><subject>degree-days</subject><subject>Earth, ocean, space</subject><subject>Ecological modeling</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>global warming</subject><subject>Heat sums</subject><subject>hybrid models</subject><subject>Insect ecology</subject><subject>laboratory experimentation</subject><subject>Larva - growth & development</subject><subject>larval development</subject><subject>lower developmental threshold</subject><subject>Meteorology</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>phenology</subject><subject>physiology</subject><subject>prediction</subject><subject>Predictions</subject><subject>range shifts</subject><subject>Species</subject><subject>species distribution models</subject><subject>Temperature</subject><subject>thermal constraints</subject><subject>Thermoregulation</subject><subject>United Kingdom</subject><subject>voltinism</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhiMEotvCgR8ARCCEOKR47LVjnxBayodUiQP0wMlyHGfrVTYOdkLJv2dCllZCRcIHf83jd_x6nGWPgJyCVOQ1QEGIEKdwJ1uBYqpQUJK72YoQoIUSXB5lxyntCDZYy_vZEaWMUxCwysK74FLuO9uOte-2eX85JR_asJ1yv-9j-OHy1DvrEap9GqKvxsGHLt-H2rV5H13t7byR8tDk0aUep8gOARfWdUNuW783g8vtpem27s2D7F5j2uQeHsaT7OL92dfNx-L884dPm7fnheG8XBec0ZIL1ihHaqFUaRnBhSodLxtJGwHAalUpoI6sSysrQ8EwjEtSYSfX7CR7ueiih--jS4Pe-2Rd25rOhTFpRRlIWVL-HySRhCqYNZ_9Re7CGDu0ofEmSomSCoReLZCNIaXoGt1HfIE4aSB6rpYG0HO1NCD75CA4VntXX5N_yoPAiwNgkjVtE01nfbrhOOP4OjMnFu7Kt276d0Z9tvlGCYCiQCn9benxcnCXhhBvhBnGpCQYf7rEGxO02UZMfvEFFQT-JFUqPvt9vhBmmLD42iVzq9NbqOtb9XWjh58D-wUzNNPa</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Buckley, Lauren B</creator><creator>Waaser, Stephanie A</creator><creator>MacLean, Heidi J</creator><creator>Fox, Richard</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7TG</scope><scope>7U6</scope><scope>KL.</scope><scope>7X8</scope></search><sort><creationdate>201112</creationdate><title>Does including physiology improve species distribution model predictions of responses to recent climate change?</title><author>Buckley, Lauren B ; Waaser, Stephanie A ; MacLean, Heidi J ; Fox, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5574-5327563f9e0d6997c303f997e57f82f6113d9b912e047c8ba21a399780b978843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Applied ecology</topic><topic>biogeography</topic><topic>Biological and medical sciences</topic><topic>Butterflies</topic><topic>Butterflies & moths</topic><topic>Butterflies - physiology</topic><topic>Climate Change</topic><topic>Climate models</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Correlation analysis</topic><topic>degree-days</topic><topic>Earth, ocean, space</topic><topic>Ecological modeling</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>global warming</topic><topic>Heat sums</topic><topic>hybrid models</topic><topic>Insect ecology</topic><topic>laboratory experimentation</topic><topic>Larva - growth & development</topic><topic>larval development</topic><topic>lower developmental threshold</topic><topic>Meteorology</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>phenology</topic><topic>physiology</topic><topic>prediction</topic><topic>Predictions</topic><topic>range shifts</topic><topic>Species</topic><topic>species distribution models</topic><topic>Temperature</topic><topic>thermal constraints</topic><topic>Thermoregulation</topic><topic>United Kingdom</topic><topic>voltinism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buckley, Lauren B</creatorcontrib><creatorcontrib>Waaser, Stephanie A</creatorcontrib><creatorcontrib>MacLean, Heidi J</creatorcontrib><creatorcontrib>Fox, Richard</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buckley, Lauren B</au><au>Waaser, Stephanie A</au><au>MacLean, Heidi J</au><au>Fox, Richard</au><au>Simpson, SJ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Does including physiology improve species distribution model predictions of responses to recent climate change?</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2011-12</date><risdate>2011</risdate><volume>92</volume><issue>12</issue><spage>2214</spage><epage>2221</epage><pages>2214-2221</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific estimates of LDT based on laboratory experiments can improve the ability of SDMs to predict the distribution shifts of six U.K. butterflies in response to recent climate warming. We find that species-specific and constant (5°C) LDT degree-day models perform similarly at predicting distributions during the period of 1970-1982. However, when the models for the 1970-1982 period are projected to predict distributions in 1995-1999 and 2000-2004, species-specific LDT degree-day models modestly outperform constant LDT degree-day models. Our results suggest that, while including species-specific physiology in correlative models may enhance predictions of species' distribution responses to climate change, more detailed models may be needed to adequately account for interspecific physiological differences.</abstract><cop>Washington, DC</cop><pub>Ecological Society of America</pub><pmid>22352161</pmid><doi>10.1890/11-0066.1</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-9658 |
ispartof | Ecology (Durham), 2011-12, Vol.92 (12), p.2214-2221 |
issn | 0012-9658 1939-9170 |
language | eng |
recordid | cdi_proquest_miscellaneous_920802914 |
source | Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animal and plant ecology Animal, plant and microbial ecology Animals Applied ecology biogeography Biological and medical sciences Butterflies Butterflies & moths Butterflies - physiology Climate Change Climate models Climatology. Bioclimatology. Climate change Correlation analysis degree-days Earth, ocean, space Ecological modeling Exact sciences and technology External geophysics Fundamental and applied biological sciences. Psychology General aspects global warming Heat sums hybrid models Insect ecology laboratory experimentation Larva - growth & development larval development lower developmental threshold Meteorology Modeling Models, Biological phenology physiology prediction Predictions range shifts Species species distribution models Temperature thermal constraints Thermoregulation United Kingdom voltinism |
title | Does including physiology improve species distribution model predictions of responses to recent climate change? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Does%20including%20physiology%20improve%20species%20distribution%20model%20predictions%20of%20responses%20to%20recent%20climate%20change?&rft.jtitle=Ecology%20(Durham)&rft.au=Buckley,%20Lauren%20B&rft.date=2011-12&rft.volume=92&rft.issue=12&rft.spage=2214&rft.epage=2221&rft.pages=2214-2221&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/11-0066.1&rft_dat=%3Cjstor_proqu%3E23143880%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912996726&rft_id=info:pmid/22352161&rft_jstor_id=23143880&rfr_iscdi=true |