Does including physiology improve species distribution model predictions of responses to recent climate change?

Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2011-12, Vol.92 (12), p.2214-2221
Hauptverfasser: Buckley, Lauren B, Waaser, Stephanie A, MacLean, Heidi J, Fox, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2221
container_issue 12
container_start_page 2214
container_title Ecology (Durham)
container_volume 92
creator Buckley, Lauren B
Waaser, Stephanie A
MacLean, Heidi J
Fox, Richard
description Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific estimates of LDT based on laboratory experiments can improve the ability of SDMs to predict the distribution shifts of six U.K. butterflies in response to recent climate warming. We find that species-specific and constant (5°C) LDT degree-day models perform similarly at predicting distributions during the period of 1970-1982. However, when the models for the 1970-1982 period are projected to predict distributions in 1995-1999 and 2000-2004, species-specific LDT degree-day models modestly outperform constant LDT degree-day models. Our results suggest that, while including species-specific physiology in correlative models may enhance predictions of species' distribution responses to climate change, more detailed models may be needed to adequately account for interspecific physiological differences.
doi_str_mv 10.1890/11-0066.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_920802914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23143880</jstor_id><sourcerecordid>23143880</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5574-5327563f9e0d6997c303f997e57f82f6113d9b912e047c8ba21a399780b978843</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEotvCgR8ARCCEOKR47LVjnxBayodUiQP0wMlyHGfrVTYOdkLJv2dCllZCRcIHf83jd_x6nGWPgJyCVOQ1QEGIEKdwJ1uBYqpQUJK72YoQoIUSXB5lxyntCDZYy_vZEaWMUxCwysK74FLuO9uOte-2eX85JR_asJ1yv-9j-OHy1DvrEap9GqKvxsGHLt-H2rV5H13t7byR8tDk0aUep8gOARfWdUNuW783g8vtpem27s2D7F5j2uQeHsaT7OL92dfNx-L884dPm7fnheG8XBec0ZIL1ihHaqFUaRnBhSodLxtJGwHAalUpoI6sSysrQ8EwjEtSYSfX7CR7ueiih--jS4Pe-2Rd25rOhTFpRRlIWVL-HySRhCqYNZ_9Re7CGDu0ofEmSomSCoReLZCNIaXoGt1HfIE4aSB6rpYG0HO1NCD75CA4VntXX5N_yoPAiwNgkjVtE01nfbrhOOP4OjMnFu7Kt276d0Z9tvlGCYCiQCn9benxcnCXhhBvhBnGpCQYf7rEGxO02UZMfvEFFQT-JFUqPvt9vhBmmLD42iVzq9NbqOtb9XWjh58D-wUzNNPa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912996726</pqid></control><display><type>article</type><title>Does including physiology improve species distribution model predictions of responses to recent climate change?</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Buckley, Lauren B ; Waaser, Stephanie A ; MacLean, Heidi J ; Fox, Richard</creator><contributor>Simpson, SJ</contributor><creatorcontrib>Buckley, Lauren B ; Waaser, Stephanie A ; MacLean, Heidi J ; Fox, Richard ; Simpson, SJ</creatorcontrib><description>Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific estimates of LDT based on laboratory experiments can improve the ability of SDMs to predict the distribution shifts of six U.K. butterflies in response to recent climate warming. We find that species-specific and constant (5°C) LDT degree-day models perform similarly at predicting distributions during the period of 1970-1982. However, when the models for the 1970-1982 period are projected to predict distributions in 1995-1999 and 2000-2004, species-specific LDT degree-day models modestly outperform constant LDT degree-day models. Our results suggest that, while including species-specific physiology in correlative models may enhance predictions of species' distribution responses to climate change, more detailed models may be needed to adequately account for interspecific physiological differences.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1890/11-0066.1</identifier><identifier>PMID: 22352161</identifier><identifier>CODEN: ECGYAQ</identifier><language>eng</language><publisher>Washington, DC: Ecological Society of America</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Applied ecology ; biogeography ; Biological and medical sciences ; Butterflies ; Butterflies &amp; moths ; Butterflies - physiology ; Climate Change ; Climate models ; Climatology. Bioclimatology. Climate change ; Correlation analysis ; degree-days ; Earth, ocean, space ; Ecological modeling ; Exact sciences and technology ; External geophysics ; Fundamental and applied biological sciences. Psychology ; General aspects ; global warming ; Heat sums ; hybrid models ; Insect ecology ; laboratory experimentation ; Larva - growth &amp; development ; larval development ; lower developmental threshold ; Meteorology ; Modeling ; Models, Biological ; phenology ; physiology ; prediction ; Predictions ; range shifts ; Species ; species distribution models ; Temperature ; thermal constraints ; Thermoregulation ; United Kingdom ; voltinism</subject><ispartof>Ecology (Durham), 2011-12, Vol.92 (12), p.2214-2221</ispartof><rights>Copyright © 2011 The Ecological Society of America</rights><rights>2011 by the Ecological Society of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Ecological Society of America Dec 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5574-5327563f9e0d6997c303f997e57f82f6113d9b912e047c8ba21a399780b978843</citedby><cites>FETCH-LOGICAL-a5574-5327563f9e0d6997c303f997e57f82f6113d9b912e047c8ba21a399780b978843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23143880$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23143880$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27903,27904,45553,45554,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25356991$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22352161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Simpson, SJ</contributor><creatorcontrib>Buckley, Lauren B</creatorcontrib><creatorcontrib>Waaser, Stephanie A</creatorcontrib><creatorcontrib>MacLean, Heidi J</creatorcontrib><creatorcontrib>Fox, Richard</creatorcontrib><title>Does including physiology improve species distribution model predictions of responses to recent climate change?</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific estimates of LDT based on laboratory experiments can improve the ability of SDMs to predict the distribution shifts of six U.K. butterflies in response to recent climate warming. We find that species-specific and constant (5°C) LDT degree-day models perform similarly at predicting distributions during the period of 1970-1982. However, when the models for the 1970-1982 period are projected to predict distributions in 1995-1999 and 2000-2004, species-specific LDT degree-day models modestly outperform constant LDT degree-day models. Our results suggest that, while including species-specific physiology in correlative models may enhance predictions of species' distribution responses to climate change, more detailed models may be needed to adequately account for interspecific physiological differences.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Applied ecology</subject><subject>biogeography</subject><subject>Biological and medical sciences</subject><subject>Butterflies</subject><subject>Butterflies &amp; moths</subject><subject>Butterflies - physiology</subject><subject>Climate Change</subject><subject>Climate models</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Correlation analysis</subject><subject>degree-days</subject><subject>Earth, ocean, space</subject><subject>Ecological modeling</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>global warming</subject><subject>Heat sums</subject><subject>hybrid models</subject><subject>Insect ecology</subject><subject>laboratory experimentation</subject><subject>Larva - growth &amp; development</subject><subject>larval development</subject><subject>lower developmental threshold</subject><subject>Meteorology</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>phenology</subject><subject>physiology</subject><subject>prediction</subject><subject>Predictions</subject><subject>range shifts</subject><subject>Species</subject><subject>species distribution models</subject><subject>Temperature</subject><subject>thermal constraints</subject><subject>Thermoregulation</subject><subject>United Kingdom</subject><subject>voltinism</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhiMEotvCgR8ARCCEOKR47LVjnxBayodUiQP0wMlyHGfrVTYOdkLJv2dCllZCRcIHf83jd_x6nGWPgJyCVOQ1QEGIEKdwJ1uBYqpQUJK72YoQoIUSXB5lxyntCDZYy_vZEaWMUxCwysK74FLuO9uOte-2eX85JR_asJ1yv-9j-OHy1DvrEap9GqKvxsGHLt-H2rV5H13t7byR8tDk0aUep8gOARfWdUNuW783g8vtpem27s2D7F5j2uQeHsaT7OL92dfNx-L884dPm7fnheG8XBec0ZIL1ihHaqFUaRnBhSodLxtJGwHAalUpoI6sSysrQ8EwjEtSYSfX7CR7ueiih--jS4Pe-2Rd25rOhTFpRRlIWVL-HySRhCqYNZ_9Re7CGDu0ofEmSomSCoReLZCNIaXoGt1HfIE4aSB6rpYG0HO1NCD75CA4VntXX5N_yoPAiwNgkjVtE01nfbrhOOP4OjMnFu7Kt276d0Z9tvlGCYCiQCn9benxcnCXhhBvhBnGpCQYf7rEGxO02UZMfvEFFQT-JFUqPvt9vhBmmLD42iVzq9NbqOtb9XWjh58D-wUzNNPa</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Buckley, Lauren B</creator><creator>Waaser, Stephanie A</creator><creator>MacLean, Heidi J</creator><creator>Fox, Richard</creator><general>Ecological Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7TG</scope><scope>7U6</scope><scope>KL.</scope><scope>7X8</scope></search><sort><creationdate>201112</creationdate><title>Does including physiology improve species distribution model predictions of responses to recent climate change?</title><author>Buckley, Lauren B ; Waaser, Stephanie A ; MacLean, Heidi J ; Fox, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5574-5327563f9e0d6997c303f997e57f82f6113d9b912e047c8ba21a399780b978843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Applied ecology</topic><topic>biogeography</topic><topic>Biological and medical sciences</topic><topic>Butterflies</topic><topic>Butterflies &amp; moths</topic><topic>Butterflies - physiology</topic><topic>Climate Change</topic><topic>Climate models</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Correlation analysis</topic><topic>degree-days</topic><topic>Earth, ocean, space</topic><topic>Ecological modeling</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>global warming</topic><topic>Heat sums</topic><topic>hybrid models</topic><topic>Insect ecology</topic><topic>laboratory experimentation</topic><topic>Larva - growth &amp; development</topic><topic>larval development</topic><topic>lower developmental threshold</topic><topic>Meteorology</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>phenology</topic><topic>physiology</topic><topic>prediction</topic><topic>Predictions</topic><topic>range shifts</topic><topic>Species</topic><topic>species distribution models</topic><topic>Temperature</topic><topic>thermal constraints</topic><topic>Thermoregulation</topic><topic>United Kingdom</topic><topic>voltinism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buckley, Lauren B</creatorcontrib><creatorcontrib>Waaser, Stephanie A</creatorcontrib><creatorcontrib>MacLean, Heidi J</creatorcontrib><creatorcontrib>Fox, Richard</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buckley, Lauren B</au><au>Waaser, Stephanie A</au><au>MacLean, Heidi J</au><au>Fox, Richard</au><au>Simpson, SJ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Does including physiology improve species distribution model predictions of responses to recent climate change?</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2011-12</date><risdate>2011</risdate><volume>92</volume><issue>12</issue><spage>2214</spage><epage>2221</epage><pages>2214-2221</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><coden>ECGYAQ</coden><abstract>Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific estimates of LDT based on laboratory experiments can improve the ability of SDMs to predict the distribution shifts of six U.K. butterflies in response to recent climate warming. We find that species-specific and constant (5°C) LDT degree-day models perform similarly at predicting distributions during the period of 1970-1982. However, when the models for the 1970-1982 period are projected to predict distributions in 1995-1999 and 2000-2004, species-specific LDT degree-day models modestly outperform constant LDT degree-day models. Our results suggest that, while including species-specific physiology in correlative models may enhance predictions of species' distribution responses to climate change, more detailed models may be needed to adequately account for interspecific physiological differences.</abstract><cop>Washington, DC</cop><pub>Ecological Society of America</pub><pmid>22352161</pmid><doi>10.1890/11-0066.1</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 2011-12, Vol.92 (12), p.2214-2221
issn 0012-9658
1939-9170
language eng
recordid cdi_proquest_miscellaneous_920802914
source Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animal and plant ecology
Animal, plant and microbial ecology
Animals
Applied ecology
biogeography
Biological and medical sciences
Butterflies
Butterflies & moths
Butterflies - physiology
Climate Change
Climate models
Climatology. Bioclimatology. Climate change
Correlation analysis
degree-days
Earth, ocean, space
Ecological modeling
Exact sciences and technology
External geophysics
Fundamental and applied biological sciences. Psychology
General aspects
global warming
Heat sums
hybrid models
Insect ecology
laboratory experimentation
Larva - growth & development
larval development
lower developmental threshold
Meteorology
Modeling
Models, Biological
phenology
physiology
prediction
Predictions
range shifts
Species
species distribution models
Temperature
thermal constraints
Thermoregulation
United Kingdom
voltinism
title Does including physiology improve species distribution model predictions of responses to recent climate change?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A07%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Does%20including%20physiology%20improve%20species%20distribution%20model%20predictions%20of%20responses%20to%20recent%20climate%20change?&rft.jtitle=Ecology%20(Durham)&rft.au=Buckley,%20Lauren%20B&rft.date=2011-12&rft.volume=92&rft.issue=12&rft.spage=2214&rft.epage=2221&rft.pages=2214-2221&rft.issn=0012-9658&rft.eissn=1939-9170&rft.coden=ECGYAQ&rft_id=info:doi/10.1890/11-0066.1&rft_dat=%3Cjstor_proqu%3E23143880%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912996726&rft_id=info:pmid/22352161&rft_jstor_id=23143880&rfr_iscdi=true