Turbulent pressure support in the outer parts of galaxy clusters

ABSTRACT We use 3D magnetohydrodynamics simulations with anisotropic thermal conduction to study turbulence due to the magnetothermal instability (MTI) in the intracluster medium (ICM) of galaxy clusters. The MTI grows on time‐scales of ≲1 Gyr and is capable of driving vigorous, sustained turbulence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society. Letters 2012-01, Vol.419 (1), p.L29-L33
Hauptverfasser: Parrish, Ian J., McCourt, Michael, Quataert, Eliot, Sharma, Prateek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L33
container_issue 1
container_start_page L29
container_title Monthly notices of the Royal Astronomical Society. Letters
container_volume 419
creator Parrish, Ian J.
McCourt, Michael
Quataert, Eliot
Sharma, Prateek
description ABSTRACT We use 3D magnetohydrodynamics simulations with anisotropic thermal conduction to study turbulence due to the magnetothermal instability (MTI) in the intracluster medium (ICM) of galaxy clusters. The MTI grows on time‐scales of ≲1 Gyr and is capable of driving vigorous, sustained turbulence in the outer parts of galaxy clusters if the temperature gradient is maintained in spite of the rapid thermal conduction. If this is the case, turbulence due to the MTI can provide up to 5–30 per cent of the pressure support beyond r500 in galaxy clusters, an effect that is strongest for hot, massive clusters. The turbulence driven by the MTI is generally additive to other sources of turbulence in the ICM, such as that produced by structure formation. This new source of non‐thermal pressure support reduces the observed Sunyaev–Zel’dovich (SZ) signal and X‐ray pressure gradient for a given cluster mass and introduces a cluster mass and temperature‐gradient‐dependent bias in SZ and X‐ray mass estimates of clusters. This additional physics may also need to be taken into account when estimating the matter power spectrum normalization, σ8, through simulation templates from the observed amplitude of the SZ power spectrum.
doi_str_mv 10.1111/j.1745-3933.2011.01171.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920798012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671345462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4951-9a0eb3700215f337deb424f955e6a3fb8302189500ddff879190b097e26a7af03</originalsourceid><addsrcrecordid>eNqNkE9PwzAMxSMEEmPwHXKDS4uTNE1zQaCJf9KAyzhHaedAp24tSSO2b0_LEEeEJctP9ns-_AihDFI21OUqZSqTidBCpBwYS4dWLN0ekMnv4fBXc3lMTkJYAQhVqGJCrhfRl7HBTU87jyFEjzTErmt9T-sN7d-RtrFHTzvr-0BbR99sY7c7WjUxDPtwSo6cbQKe_cwpeb27XcwekvnL_ePsZp5UmZYs0RawFAqAM-mEUEssM545LSXmVriyEMOl0BJguXSuUJppKEEr5LlV1oGYkvP93863HxFDb9Z1qLBp7AbbGIzmoHQBjA_Oiz-dLFdMZDLLR2uxt1a-DcGjM52v19bvDAMz4jUrM5IzI0Uz4jXfeM12iF7to591g7t_58zT85yPUnwBm41_9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671345462</pqid></control><display><type>article</type><title>Turbulent pressure support in the outer parts of galaxy clusters</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Parrish, Ian J. ; McCourt, Michael ; Quataert, Eliot ; Sharma, Prateek</creator><creatorcontrib>Parrish, Ian J. ; McCourt, Michael ; Quataert, Eliot ; Sharma, Prateek</creatorcontrib><description>ABSTRACT We use 3D magnetohydrodynamics simulations with anisotropic thermal conduction to study turbulence due to the magnetothermal instability (MTI) in the intracluster medium (ICM) of galaxy clusters. The MTI grows on time‐scales of ≲1 Gyr and is capable of driving vigorous, sustained turbulence in the outer parts of galaxy clusters if the temperature gradient is maintained in spite of the rapid thermal conduction. If this is the case, turbulence due to the MTI can provide up to 5–30 per cent of the pressure support beyond r500 in galaxy clusters, an effect that is strongest for hot, massive clusters. The turbulence driven by the MTI is generally additive to other sources of turbulence in the ICM, such as that produced by structure formation. This new source of non‐thermal pressure support reduces the observed Sunyaev–Zel’dovich (SZ) signal and X‐ray pressure gradient for a given cluster mass and introduces a cluster mass and temperature‐gradient‐dependent bias in SZ and X‐ray mass estimates of clusters. This additional physics may also need to be taken into account when estimating the matter power spectrum normalization, σ8, through simulation templates from the observed amplitude of the SZ power spectrum.</description><identifier>ISSN: 1745-3925</identifier><identifier>EISSN: 1745-3933</identifier><identifier>DOI: 10.1111/j.1745-3933.2011.01171.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Clusters ; convection ; Fluid dynamics ; Fluid flow ; Galaxies ; galaxies: clusters: intracluster medium ; instabilities ; Simulation ; Turbulence ; Turbulent flow ; X-rays ; X‐rays: galaxies: clusters</subject><ispartof>Monthly notices of the Royal Astronomical Society. Letters, 2012-01, Vol.419 (1), p.L29-L33</ispartof><rights>2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4951-9a0eb3700215f337deb424f955e6a3fb8302189500ddff879190b097e26a7af03</citedby><cites>FETCH-LOGICAL-c4951-9a0eb3700215f337deb424f955e6a3fb8302189500ddff879190b097e26a7af03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1745-3933.2011.01171.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1745-3933.2011.01171.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Parrish, Ian J.</creatorcontrib><creatorcontrib>McCourt, Michael</creatorcontrib><creatorcontrib>Quataert, Eliot</creatorcontrib><creatorcontrib>Sharma, Prateek</creatorcontrib><title>Turbulent pressure support in the outer parts of galaxy clusters</title><title>Monthly notices of the Royal Astronomical Society. Letters</title><description>ABSTRACT We use 3D magnetohydrodynamics simulations with anisotropic thermal conduction to study turbulence due to the magnetothermal instability (MTI) in the intracluster medium (ICM) of galaxy clusters. The MTI grows on time‐scales of ≲1 Gyr and is capable of driving vigorous, sustained turbulence in the outer parts of galaxy clusters if the temperature gradient is maintained in spite of the rapid thermal conduction. If this is the case, turbulence due to the MTI can provide up to 5–30 per cent of the pressure support beyond r500 in galaxy clusters, an effect that is strongest for hot, massive clusters. The turbulence driven by the MTI is generally additive to other sources of turbulence in the ICM, such as that produced by structure formation. This new source of non‐thermal pressure support reduces the observed Sunyaev–Zel’dovich (SZ) signal and X‐ray pressure gradient for a given cluster mass and introduces a cluster mass and temperature‐gradient‐dependent bias in SZ and X‐ray mass estimates of clusters. This additional physics may also need to be taken into account when estimating the matter power spectrum normalization, σ8, through simulation templates from the observed amplitude of the SZ power spectrum.</description><subject>Clusters</subject><subject>convection</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Galaxies</subject><subject>galaxies: clusters: intracluster medium</subject><subject>instabilities</subject><subject>Simulation</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>X-rays</subject><subject>X‐rays: galaxies: clusters</subject><issn>1745-3925</issn><issn>1745-3933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PwzAMxSMEEmPwHXKDS4uTNE1zQaCJf9KAyzhHaedAp24tSSO2b0_LEEeEJctP9ns-_AihDFI21OUqZSqTidBCpBwYS4dWLN0ekMnv4fBXc3lMTkJYAQhVqGJCrhfRl7HBTU87jyFEjzTErmt9T-sN7d-RtrFHTzvr-0BbR99sY7c7WjUxDPtwSo6cbQKe_cwpeb27XcwekvnL_ePsZp5UmZYs0RawFAqAM-mEUEssM545LSXmVriyEMOl0BJguXSuUJppKEEr5LlV1oGYkvP93863HxFDb9Z1qLBp7AbbGIzmoHQBjA_Oiz-dLFdMZDLLR2uxt1a-DcGjM52v19bvDAMz4jUrM5IzI0Uz4jXfeM12iF7to591g7t_58zT85yPUnwBm41_9g</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Parrish, Ian J.</creator><creator>McCourt, Michael</creator><creator>Quataert, Eliot</creator><creator>Sharma, Prateek</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>201201</creationdate><title>Turbulent pressure support in the outer parts of galaxy clusters</title><author>Parrish, Ian J. ; McCourt, Michael ; Quataert, Eliot ; Sharma, Prateek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4951-9a0eb3700215f337deb424f955e6a3fb8302189500ddff879190b097e26a7af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Clusters</topic><topic>convection</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Galaxies</topic><topic>galaxies: clusters: intracluster medium</topic><topic>instabilities</topic><topic>Simulation</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>X-rays</topic><topic>X‐rays: galaxies: clusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parrish, Ian J.</creatorcontrib><creatorcontrib>McCourt, Michael</creatorcontrib><creatorcontrib>Quataert, Eliot</creatorcontrib><creatorcontrib>Sharma, Prateek</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parrish, Ian J.</au><au>McCourt, Michael</au><au>Quataert, Eliot</au><au>Sharma, Prateek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent pressure support in the outer parts of galaxy clusters</atitle><jtitle>Monthly notices of the Royal Astronomical Society. Letters</jtitle><date>2012-01</date><risdate>2012</risdate><volume>419</volume><issue>1</issue><spage>L29</spage><epage>L33</epage><pages>L29-L33</pages><issn>1745-3925</issn><eissn>1745-3933</eissn><abstract>ABSTRACT We use 3D magnetohydrodynamics simulations with anisotropic thermal conduction to study turbulence due to the magnetothermal instability (MTI) in the intracluster medium (ICM) of galaxy clusters. The MTI grows on time‐scales of ≲1 Gyr and is capable of driving vigorous, sustained turbulence in the outer parts of galaxy clusters if the temperature gradient is maintained in spite of the rapid thermal conduction. If this is the case, turbulence due to the MTI can provide up to 5–30 per cent of the pressure support beyond r500 in galaxy clusters, an effect that is strongest for hot, massive clusters. The turbulence driven by the MTI is generally additive to other sources of turbulence in the ICM, such as that produced by structure formation. This new source of non‐thermal pressure support reduces the observed Sunyaev–Zel’dovich (SZ) signal and X‐ray pressure gradient for a given cluster mass and introduces a cluster mass and temperature‐gradient‐dependent bias in SZ and X‐ray mass estimates of clusters. This additional physics may also need to be taken into account when estimating the matter power spectrum normalization, σ8, through simulation templates from the observed amplitude of the SZ power spectrum.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1745-3933.2011.01171.x</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-3925
ispartof Monthly notices of the Royal Astronomical Society. Letters, 2012-01, Vol.419 (1), p.L29-L33
issn 1745-3925
1745-3933
language eng
recordid cdi_proquest_miscellaneous_920798012
source Oxford Journals Open Access Collection; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Clusters
convection
Fluid dynamics
Fluid flow
Galaxies
galaxies: clusters: intracluster medium
instabilities
Simulation
Turbulence
Turbulent flow
X-rays
X‐rays: galaxies: clusters
title Turbulent pressure support in the outer parts of galaxy clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20pressure%20support%20in%20the%20outer%20parts%20of%20galaxy%20clusters&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society.%20Letters&rft.au=Parrish,%20Ian%20J.&rft.date=2012-01&rft.volume=419&rft.issue=1&rft.spage=L29&rft.epage=L33&rft.pages=L29-L33&rft.issn=1745-3925&rft.eissn=1745-3933&rft_id=info:doi/10.1111/j.1745-3933.2011.01171.x&rft_dat=%3Cproquest_cross%3E1671345462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671345462&rft_id=info:pmid/&rfr_iscdi=true