Turbulent pressure support in the outer parts of galaxy clusters
ABSTRACT We use 3D magnetohydrodynamics simulations with anisotropic thermal conduction to study turbulence due to the magnetothermal instability (MTI) in the intracluster medium (ICM) of galaxy clusters. The MTI grows on time‐scales of ≲1 Gyr and is capable of driving vigorous, sustained turbulence...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society. Letters 2012-01, Vol.419 (1), p.L29-L33 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | L33 |
---|---|
container_issue | 1 |
container_start_page | L29 |
container_title | Monthly notices of the Royal Astronomical Society. Letters |
container_volume | 419 |
creator | Parrish, Ian J. McCourt, Michael Quataert, Eliot Sharma, Prateek |
description | ABSTRACT
We use 3D magnetohydrodynamics simulations with anisotropic thermal conduction to study turbulence due to the magnetothermal instability (MTI) in the intracluster medium (ICM) of galaxy clusters. The MTI grows on time‐scales of ≲1 Gyr and is capable of driving vigorous, sustained turbulence in the outer parts of galaxy clusters if the temperature gradient is maintained in spite of the rapid thermal conduction. If this is the case, turbulence due to the MTI can provide up to 5–30 per cent of the pressure support beyond r500 in galaxy clusters, an effect that is strongest for hot, massive clusters. The turbulence driven by the MTI is generally additive to other sources of turbulence in the ICM, such as that produced by structure formation. This new source of non‐thermal pressure support reduces the observed Sunyaev–Zel’dovich (SZ) signal and X‐ray pressure gradient for a given cluster mass and introduces a cluster mass and temperature‐gradient‐dependent bias in SZ and X‐ray mass estimates of clusters. This additional physics may also need to be taken into account when estimating the matter power spectrum normalization, σ8, through simulation templates from the observed amplitude of the SZ power spectrum. |
doi_str_mv | 10.1111/j.1745-3933.2011.01171.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920798012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671345462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4951-9a0eb3700215f337deb424f955e6a3fb8302189500ddff879190b097e26a7af03</originalsourceid><addsrcrecordid>eNqNkE9PwzAMxSMEEmPwHXKDS4uTNE1zQaCJf9KAyzhHaedAp24tSSO2b0_LEEeEJctP9ns-_AihDFI21OUqZSqTidBCpBwYS4dWLN0ekMnv4fBXc3lMTkJYAQhVqGJCrhfRl7HBTU87jyFEjzTErmt9T-sN7d-RtrFHTzvr-0BbR99sY7c7WjUxDPtwSo6cbQKe_cwpeb27XcwekvnL_ePsZp5UmZYs0RawFAqAM-mEUEssM545LSXmVriyEMOl0BJguXSuUJppKEEr5LlV1oGYkvP93863HxFDb9Z1qLBp7AbbGIzmoHQBjA_Oiz-dLFdMZDLLR2uxt1a-DcGjM52v19bvDAMz4jUrM5IzI0Uz4jXfeM12iF7to591g7t_58zT85yPUnwBm41_9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671345462</pqid></control><display><type>article</type><title>Turbulent pressure support in the outer parts of galaxy clusters</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Parrish, Ian J. ; McCourt, Michael ; Quataert, Eliot ; Sharma, Prateek</creator><creatorcontrib>Parrish, Ian J. ; McCourt, Michael ; Quataert, Eliot ; Sharma, Prateek</creatorcontrib><description>ABSTRACT
We use 3D magnetohydrodynamics simulations with anisotropic thermal conduction to study turbulence due to the magnetothermal instability (MTI) in the intracluster medium (ICM) of galaxy clusters. The MTI grows on time‐scales of ≲1 Gyr and is capable of driving vigorous, sustained turbulence in the outer parts of galaxy clusters if the temperature gradient is maintained in spite of the rapid thermal conduction. If this is the case, turbulence due to the MTI can provide up to 5–30 per cent of the pressure support beyond r500 in galaxy clusters, an effect that is strongest for hot, massive clusters. The turbulence driven by the MTI is generally additive to other sources of turbulence in the ICM, such as that produced by structure formation. This new source of non‐thermal pressure support reduces the observed Sunyaev–Zel’dovich (SZ) signal and X‐ray pressure gradient for a given cluster mass and introduces a cluster mass and temperature‐gradient‐dependent bias in SZ and X‐ray mass estimates of clusters. This additional physics may also need to be taken into account when estimating the matter power spectrum normalization, σ8, through simulation templates from the observed amplitude of the SZ power spectrum.</description><identifier>ISSN: 1745-3925</identifier><identifier>EISSN: 1745-3933</identifier><identifier>DOI: 10.1111/j.1745-3933.2011.01171.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Clusters ; convection ; Fluid dynamics ; Fluid flow ; Galaxies ; galaxies: clusters: intracluster medium ; instabilities ; Simulation ; Turbulence ; Turbulent flow ; X-rays ; X‐rays: galaxies: clusters</subject><ispartof>Monthly notices of the Royal Astronomical Society. Letters, 2012-01, Vol.419 (1), p.L29-L33</ispartof><rights>2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4951-9a0eb3700215f337deb424f955e6a3fb8302189500ddff879190b097e26a7af03</citedby><cites>FETCH-LOGICAL-c4951-9a0eb3700215f337deb424f955e6a3fb8302189500ddff879190b097e26a7af03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1745-3933.2011.01171.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1745-3933.2011.01171.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Parrish, Ian J.</creatorcontrib><creatorcontrib>McCourt, Michael</creatorcontrib><creatorcontrib>Quataert, Eliot</creatorcontrib><creatorcontrib>Sharma, Prateek</creatorcontrib><title>Turbulent pressure support in the outer parts of galaxy clusters</title><title>Monthly notices of the Royal Astronomical Society. Letters</title><description>ABSTRACT
We use 3D magnetohydrodynamics simulations with anisotropic thermal conduction to study turbulence due to the magnetothermal instability (MTI) in the intracluster medium (ICM) of galaxy clusters. The MTI grows on time‐scales of ≲1 Gyr and is capable of driving vigorous, sustained turbulence in the outer parts of galaxy clusters if the temperature gradient is maintained in spite of the rapid thermal conduction. If this is the case, turbulence due to the MTI can provide up to 5–30 per cent of the pressure support beyond r500 in galaxy clusters, an effect that is strongest for hot, massive clusters. The turbulence driven by the MTI is generally additive to other sources of turbulence in the ICM, such as that produced by structure formation. This new source of non‐thermal pressure support reduces the observed Sunyaev–Zel’dovich (SZ) signal and X‐ray pressure gradient for a given cluster mass and introduces a cluster mass and temperature‐gradient‐dependent bias in SZ and X‐ray mass estimates of clusters. This additional physics may also need to be taken into account when estimating the matter power spectrum normalization, σ8, through simulation templates from the observed amplitude of the SZ power spectrum.</description><subject>Clusters</subject><subject>convection</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Galaxies</subject><subject>galaxies: clusters: intracluster medium</subject><subject>instabilities</subject><subject>Simulation</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>X-rays</subject><subject>X‐rays: galaxies: clusters</subject><issn>1745-3925</issn><issn>1745-3933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE9PwzAMxSMEEmPwHXKDS4uTNE1zQaCJf9KAyzhHaedAp24tSSO2b0_LEEeEJctP9ns-_AihDFI21OUqZSqTidBCpBwYS4dWLN0ekMnv4fBXc3lMTkJYAQhVqGJCrhfRl7HBTU87jyFEjzTErmt9T-sN7d-RtrFHTzvr-0BbR99sY7c7WjUxDPtwSo6cbQKe_cwpeb27XcwekvnL_ePsZp5UmZYs0RawFAqAM-mEUEssM545LSXmVriyEMOl0BJguXSuUJppKEEr5LlV1oGYkvP93863HxFDb9Z1qLBp7AbbGIzmoHQBjA_Oiz-dLFdMZDLLR2uxt1a-DcGjM52v19bvDAMz4jUrM5IzI0Uz4jXfeM12iF7to591g7t_58zT85yPUnwBm41_9g</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Parrish, Ian J.</creator><creator>McCourt, Michael</creator><creator>Quataert, Eliot</creator><creator>Sharma, Prateek</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>201201</creationdate><title>Turbulent pressure support in the outer parts of galaxy clusters</title><author>Parrish, Ian J. ; McCourt, Michael ; Quataert, Eliot ; Sharma, Prateek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4951-9a0eb3700215f337deb424f955e6a3fb8302189500ddff879190b097e26a7af03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Clusters</topic><topic>convection</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Galaxies</topic><topic>galaxies: clusters: intracluster medium</topic><topic>instabilities</topic><topic>Simulation</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>X-rays</topic><topic>X‐rays: galaxies: clusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parrish, Ian J.</creatorcontrib><creatorcontrib>McCourt, Michael</creatorcontrib><creatorcontrib>Quataert, Eliot</creatorcontrib><creatorcontrib>Sharma, Prateek</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parrish, Ian J.</au><au>McCourt, Michael</au><au>Quataert, Eliot</au><au>Sharma, Prateek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent pressure support in the outer parts of galaxy clusters</atitle><jtitle>Monthly notices of the Royal Astronomical Society. Letters</jtitle><date>2012-01</date><risdate>2012</risdate><volume>419</volume><issue>1</issue><spage>L29</spage><epage>L33</epage><pages>L29-L33</pages><issn>1745-3925</issn><eissn>1745-3933</eissn><abstract>ABSTRACT
We use 3D magnetohydrodynamics simulations with anisotropic thermal conduction to study turbulence due to the magnetothermal instability (MTI) in the intracluster medium (ICM) of galaxy clusters. The MTI grows on time‐scales of ≲1 Gyr and is capable of driving vigorous, sustained turbulence in the outer parts of galaxy clusters if the temperature gradient is maintained in spite of the rapid thermal conduction. If this is the case, turbulence due to the MTI can provide up to 5–30 per cent of the pressure support beyond r500 in galaxy clusters, an effect that is strongest for hot, massive clusters. The turbulence driven by the MTI is generally additive to other sources of turbulence in the ICM, such as that produced by structure formation. This new source of non‐thermal pressure support reduces the observed Sunyaev–Zel’dovich (SZ) signal and X‐ray pressure gradient for a given cluster mass and introduces a cluster mass and temperature‐gradient‐dependent bias in SZ and X‐ray mass estimates of clusters. This additional physics may also need to be taken into account when estimating the matter power spectrum normalization, σ8, through simulation templates from the observed amplitude of the SZ power spectrum.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1745-3933.2011.01171.x</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-3925 |
ispartof | Monthly notices of the Royal Astronomical Society. Letters, 2012-01, Vol.419 (1), p.L29-L33 |
issn | 1745-3925 1745-3933 |
language | eng |
recordid | cdi_proquest_miscellaneous_920798012 |
source | Oxford Journals Open Access Collection; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Clusters convection Fluid dynamics Fluid flow Galaxies galaxies: clusters: intracluster medium instabilities Simulation Turbulence Turbulent flow X-rays X‐rays: galaxies: clusters |
title | Turbulent pressure support in the outer parts of galaxy clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20pressure%20support%20in%20the%20outer%20parts%20of%20galaxy%20clusters&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society.%20Letters&rft.au=Parrish,%20Ian%20J.&rft.date=2012-01&rft.volume=419&rft.issue=1&rft.spage=L29&rft.epage=L33&rft.pages=L29-L33&rft.issn=1745-3925&rft.eissn=1745-3933&rft_id=info:doi/10.1111/j.1745-3933.2011.01171.x&rft_dat=%3Cproquest_cross%3E1671345462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671345462&rft_id=info:pmid/&rfr_iscdi=true |