A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope

We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) using data from the South Pole Telescope (SPT). The data consist of 790 deg2 of sky observed at 150 GHz during 2008 and 2009. Here we present the power spectrum over the multipole range 650 < l < 30...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2011-12, Vol.743 (1), p.28-jQuery1323900683817='48'
Hauptverfasser: Keisler, R, Reichardt, C. L, Aird, K. A, Benson, B. A, Bleem, L. E, Carlstrom, J. E, Chang, C. L, Cho, H. M, Crawford, T. M, Crites, A. T, de Haan, T, Dobbs, M. A, Dudley, J, George, E. M, Halverson, N. W, Holder, G. P, Holzapfel, W. L, Hoover, S, Hou, Z, Hrubes, J. D, Joy, M, Knox, L, Lee, A. T, Leitch, E. M, Lueker, M, Luong-Van, D, McMahon, J. J, Mehl, J, Meyer, S. S, Millea, M, Mohr, J. J, Montroy, T. E, Natoli, T, Padin, S, Plagge, T, Pryke, C, Ruhl, J. E, Schaffer, K. K, Shaw, L, Shirokoff, E, Spieler, H. G, Staniszewski, Z, Stark, A. A, Story, K, van Engelen, A, Vanderlinde, K, Vieira, J. D, Williamson, R, Zahn, O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page jQuery1323900683817='48'
container_issue 1
container_start_page 28
container_title The Astrophysical journal
container_volume 743
creator Keisler, R
Reichardt, C. L
Aird, K. A
Benson, B. A
Bleem, L. E
Carlstrom, J. E
Chang, C. L
Cho, H. M
Crawford, T. M
Crites, A. T
de Haan, T
Dobbs, M. A
Dudley, J
George, E. M
Halverson, N. W
Holder, G. P
Holzapfel, W. L
Hoover, S
Hou, Z
Hrubes, J. D
Joy, M
Knox, L
Lee, A. T
Leitch, E. M
Lueker, M
Luong-Van, D
McMahon, J. J
Mehl, J
Meyer, S. S
Millea, M
Mohr, J. J
Montroy, T. E
Natoli, T
Padin, S
Plagge, T
Pryke, C
Ruhl, J. E
Schaffer, K. K
Shaw, L
Shirokoff, E
Spieler, H. G
Staniszewski, Z
Stark, A. A
Story, K
van Engelen, A
Vanderlinde, K
Vieira, J. D
Williamson, R
Zahn, O
description We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) using data from the South Pole Telescope (SPT). The data consist of 790 deg2 of sky observed at 150 GHz during 2008 and 2009. Here we present the power spectrum over the multipole range 650 < l < 3000, where it is dominated by primary CMB anisotropy. We combine this power spectrum with the power spectra from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP) data release to constrain cosmological models. We find that the SPT and WMAP data are consistent with each other and, when combined, are well fit by a spatially flat, Delta *LCDM cosmological model. The SPT+WMAP constraint on the spectral index of scalar fluctuations is ns = 0.9663 ? 0.0112. We detect, at ~5 Delta *s significance, the effect of gravitational lensing on the CMB power spectrum, and find its amplitude to be consistent with the Delta *LCDM cosmological model. We explore a number of extensions beyond the Delta *LCDM model. Each extension is tested independently, although there are degeneracies between some of the extension parameters. We constrain the tensor-to-scalar ratio to be r < 0.21 (95% CL) and constrain the running of the scalar spectral index to be dns /dln k = --0.024 ? 0.013. We strongly detect the effects of primordial helium and neutrinos on the CMB; a model without helium is rejected at 7.7 Delta *s, while a model without neutrinos is rejected at 7.5 Delta *s. The primordial helium abundance is measured to be Yp = 0.296 ? 0.030, and the effective number of relativistic species is measured to be N eff = 3.85 ? 0.62. The constraints on these models are strengthened when the CMB data are combined with measurements of the Hubble constant and the baryon acoustic oscillation feature. Notable improvements include ns = 0.9668 ? 0.0093, r < 0.17 (95% CL), and N eff = 3.86 ? 0.42. The SPT+WMAP data show a mild preference for low power in the CMB damping tail, and while this preference may be accommodated by models that have a negative spectral running, a high primordial helium abundance, or a high effective number of relativistic species, such models are disfavored by the abundance of low-redshift galaxy clusters.
doi_str_mv 10.1088/0004-637X/743/1/28
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_920797390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>920797390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-dd1e25803af0b982f58862f36b3542dd00fa20987fd2c9b6ee412269d6174b93</originalsourceid><addsrcrecordid>eNqNkctO3DAUhi3USkwpL9CVpQpVXaRjH-diL-mUtkggkJhFd5bHOWZckjjYCaO-fRMG2LBhdS76_l_nQsgnzr5xJuWSMZZnpaj-LKtcLPkS5AFZ8ELILBdF9Y4sXoBD8iGlv3MJSi3I_Sm9RJPGiC12Aw2ODlukP0zb--6Wro1vnnurkFpv6aW3MezMA9Lvxt7dxjB2Nb0OO4z0pkc7xLGlOz9sHzU3YZyy69AgXWODyYYeP5L3zjQJj5_iEVn_PFuvfmcXV7_OV6cXmc0LMWR1zREKyYRxbKMkuELKEpwoN6LIoa4ZcwaYkpWrwapNiZhzgFLVJa_yjRJH5PPeNqTB62T9gHZrQ9dNM2qAaf-igon6sqf6GO5HTINufbLYNKbDMCatgFWqEopNJOzJaf2UIjrdR9-a-E9zpucf6Pmmej6xnn6guQY5iU6e7E2ypnHRdNanFyUUIMtSzFy253zo3-b79TX_mtN97cR_xsKgpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920797390</pqid></control><display><type>article</type><title>A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope</title><source>Institute of Physics Open Access Journal Titles</source><creator>Keisler, R ; Reichardt, C. L ; Aird, K. A ; Benson, B. A ; Bleem, L. E ; Carlstrom, J. E ; Chang, C. L ; Cho, H. M ; Crawford, T. M ; Crites, A. T ; de Haan, T ; Dobbs, M. A ; Dudley, J ; George, E. M ; Halverson, N. W ; Holder, G. P ; Holzapfel, W. L ; Hoover, S ; Hou, Z ; Hrubes, J. D ; Joy, M ; Knox, L ; Lee, A. T ; Leitch, E. M ; Lueker, M ; Luong-Van, D ; McMahon, J. J ; Mehl, J ; Meyer, S. S ; Millea, M ; Mohr, J. J ; Montroy, T. E ; Natoli, T ; Padin, S ; Plagge, T ; Pryke, C ; Ruhl, J. E ; Schaffer, K. K ; Shaw, L ; Shirokoff, E ; Spieler, H. G ; Staniszewski, Z ; Stark, A. A ; Story, K ; van Engelen, A ; Vanderlinde, K ; Vieira, J. D ; Williamson, R ; Zahn, O</creator><creatorcontrib>Keisler, R ; Reichardt, C. L ; Aird, K. A ; Benson, B. A ; Bleem, L. E ; Carlstrom, J. E ; Chang, C. L ; Cho, H. M ; Crawford, T. M ; Crites, A. T ; de Haan, T ; Dobbs, M. A ; Dudley, J ; George, E. M ; Halverson, N. W ; Holder, G. P ; Holzapfel, W. L ; Hoover, S ; Hou, Z ; Hrubes, J. D ; Joy, M ; Knox, L ; Lee, A. T ; Leitch, E. M ; Lueker, M ; Luong-Van, D ; McMahon, J. J ; Mehl, J ; Meyer, S. S ; Millea, M ; Mohr, J. J ; Montroy, T. E ; Natoli, T ; Padin, S ; Plagge, T ; Pryke, C ; Ruhl, J. E ; Schaffer, K. K ; Shaw, L ; Shirokoff, E ; Spieler, H. G ; Staniszewski, Z ; Stark, A. A ; Story, K ; van Engelen, A ; Vanderlinde, K ; Vieira, J. D ; Williamson, R ; Zahn, O</creatorcontrib><description>We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) using data from the South Pole Telescope (SPT). The data consist of 790 deg2 of sky observed at 150 GHz during 2008 and 2009. Here we present the power spectrum over the multipole range 650 &lt; l &lt; 3000, where it is dominated by primary CMB anisotropy. We combine this power spectrum with the power spectra from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP) data release to constrain cosmological models. We find that the SPT and WMAP data are consistent with each other and, when combined, are well fit by a spatially flat, Delta *LCDM cosmological model. The SPT+WMAP constraint on the spectral index of scalar fluctuations is ns = 0.9663 ? 0.0112. We detect, at ~5 Delta *s significance, the effect of gravitational lensing on the CMB power spectrum, and find its amplitude to be consistent with the Delta *LCDM cosmological model. We explore a number of extensions beyond the Delta *LCDM model. Each extension is tested independently, although there are degeneracies between some of the extension parameters. We constrain the tensor-to-scalar ratio to be r &lt; 0.21 (95% CL) and constrain the running of the scalar spectral index to be dns /dln k = --0.024 ? 0.013. We strongly detect the effects of primordial helium and neutrinos on the CMB; a model without helium is rejected at 7.7 Delta *s, while a model without neutrinos is rejected at 7.5 Delta *s. The primordial helium abundance is measured to be Yp = 0.296 ? 0.030, and the effective number of relativistic species is measured to be N eff = 3.85 ? 0.62. The constraints on these models are strengthened when the CMB data are combined with measurements of the Hubble constant and the baryon acoustic oscillation feature. Notable improvements include ns = 0.9668 ? 0.0093, r &lt; 0.17 (95% CL), and N eff = 3.86 ? 0.42. The SPT+WMAP data show a mild preference for low power in the CMB damping tail, and while this preference may be accommodated by models that have a negative spectral running, a high primordial helium abundance, or a high effective number of relativistic species, such models are disfavored by the abundance of low-redshift galaxy clusters.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/743/1/28</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>ABUNDANCE ; Astronomy ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; BARYONS ; COSMOLOGICAL MODELS ; COSMOLOGY ; Earth, ocean, space ; Exact sciences and technology ; GALAXY CLUSTERS ; HELIUM ; NEUTRINOS ; OSCILLATIONS ; RED SHIFT ; RELATIVISTIC RANGE ; RELICT RADIATION ; TELESCOPES</subject><ispartof>The Astrophysical journal, 2011-12, Vol.743 (1), p.28-jQuery1323900683817='48'</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-dd1e25803af0b982f58862f36b3542dd00fa20987fd2c9b6ee412269d6174b93</citedby><cites>FETCH-LOGICAL-c453t-dd1e25803af0b982f58862f36b3542dd00fa20987fd2c9b6ee412269d6174b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/743/1/28/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27605,27901,27902,53906</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/743/1/28$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25286638$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22004572$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Keisler, R</creatorcontrib><creatorcontrib>Reichardt, C. L</creatorcontrib><creatorcontrib>Aird, K. A</creatorcontrib><creatorcontrib>Benson, B. A</creatorcontrib><creatorcontrib>Bleem, L. E</creatorcontrib><creatorcontrib>Carlstrom, J. E</creatorcontrib><creatorcontrib>Chang, C. L</creatorcontrib><creatorcontrib>Cho, H. M</creatorcontrib><creatorcontrib>Crawford, T. M</creatorcontrib><creatorcontrib>Crites, A. T</creatorcontrib><creatorcontrib>de Haan, T</creatorcontrib><creatorcontrib>Dobbs, M. A</creatorcontrib><creatorcontrib>Dudley, J</creatorcontrib><creatorcontrib>George, E. M</creatorcontrib><creatorcontrib>Halverson, N. W</creatorcontrib><creatorcontrib>Holder, G. P</creatorcontrib><creatorcontrib>Holzapfel, W. L</creatorcontrib><creatorcontrib>Hoover, S</creatorcontrib><creatorcontrib>Hou, Z</creatorcontrib><creatorcontrib>Hrubes, J. D</creatorcontrib><creatorcontrib>Joy, M</creatorcontrib><creatorcontrib>Knox, L</creatorcontrib><creatorcontrib>Lee, A. T</creatorcontrib><creatorcontrib>Leitch, E. M</creatorcontrib><creatorcontrib>Lueker, M</creatorcontrib><creatorcontrib>Luong-Van, D</creatorcontrib><creatorcontrib>McMahon, J. J</creatorcontrib><creatorcontrib>Mehl, J</creatorcontrib><creatorcontrib>Meyer, S. S</creatorcontrib><creatorcontrib>Millea, M</creatorcontrib><creatorcontrib>Mohr, J. J</creatorcontrib><creatorcontrib>Montroy, T. E</creatorcontrib><creatorcontrib>Natoli, T</creatorcontrib><creatorcontrib>Padin, S</creatorcontrib><creatorcontrib>Plagge, T</creatorcontrib><creatorcontrib>Pryke, C</creatorcontrib><creatorcontrib>Ruhl, J. E</creatorcontrib><creatorcontrib>Schaffer, K. K</creatorcontrib><creatorcontrib>Shaw, L</creatorcontrib><creatorcontrib>Shirokoff, E</creatorcontrib><creatorcontrib>Spieler, H. G</creatorcontrib><creatorcontrib>Staniszewski, Z</creatorcontrib><creatorcontrib>Stark, A. A</creatorcontrib><creatorcontrib>Story, K</creatorcontrib><creatorcontrib>van Engelen, A</creatorcontrib><creatorcontrib>Vanderlinde, K</creatorcontrib><creatorcontrib>Vieira, J. D</creatorcontrib><creatorcontrib>Williamson, R</creatorcontrib><creatorcontrib>Zahn, O</creatorcontrib><title>A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope</title><title>The Astrophysical journal</title><description>We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) using data from the South Pole Telescope (SPT). The data consist of 790 deg2 of sky observed at 150 GHz during 2008 and 2009. Here we present the power spectrum over the multipole range 650 &lt; l &lt; 3000, where it is dominated by primary CMB anisotropy. We combine this power spectrum with the power spectra from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP) data release to constrain cosmological models. We find that the SPT and WMAP data are consistent with each other and, when combined, are well fit by a spatially flat, Delta *LCDM cosmological model. The SPT+WMAP constraint on the spectral index of scalar fluctuations is ns = 0.9663 ? 0.0112. We detect, at ~5 Delta *s significance, the effect of gravitational lensing on the CMB power spectrum, and find its amplitude to be consistent with the Delta *LCDM cosmological model. We explore a number of extensions beyond the Delta *LCDM model. Each extension is tested independently, although there are degeneracies between some of the extension parameters. We constrain the tensor-to-scalar ratio to be r &lt; 0.21 (95% CL) and constrain the running of the scalar spectral index to be dns /dln k = --0.024 ? 0.013. We strongly detect the effects of primordial helium and neutrinos on the CMB; a model without helium is rejected at 7.7 Delta *s, while a model without neutrinos is rejected at 7.5 Delta *s. The primordial helium abundance is measured to be Yp = 0.296 ? 0.030, and the effective number of relativistic species is measured to be N eff = 3.85 ? 0.62. The constraints on these models are strengthened when the CMB data are combined with measurements of the Hubble constant and the baryon acoustic oscillation feature. Notable improvements include ns = 0.9668 ? 0.0093, r &lt; 0.17 (95% CL), and N eff = 3.86 ? 0.42. The SPT+WMAP data show a mild preference for low power in the CMB damping tail, and while this preference may be accommodated by models that have a negative spectral running, a high primordial helium abundance, or a high effective number of relativistic species, such models are disfavored by the abundance of low-redshift galaxy clusters.</description><subject>ABUNDANCE</subject><subject>Astronomy</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>BARYONS</subject><subject>COSMOLOGICAL MODELS</subject><subject>COSMOLOGY</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>GALAXY CLUSTERS</subject><subject>HELIUM</subject><subject>NEUTRINOS</subject><subject>OSCILLATIONS</subject><subject>RED SHIFT</subject><subject>RELATIVISTIC RANGE</subject><subject>RELICT RADIATION</subject><subject>TELESCOPES</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkctO3DAUhi3USkwpL9CVpQpVXaRjH-diL-mUtkggkJhFd5bHOWZckjjYCaO-fRMG2LBhdS76_l_nQsgnzr5xJuWSMZZnpaj-LKtcLPkS5AFZ8ELILBdF9Y4sXoBD8iGlv3MJSi3I_Sm9RJPGiC12Aw2ODlukP0zb--6Wro1vnnurkFpv6aW3MezMA9Lvxt7dxjB2Nb0OO4z0pkc7xLGlOz9sHzU3YZyy69AgXWODyYYeP5L3zjQJj5_iEVn_PFuvfmcXV7_OV6cXmc0LMWR1zREKyYRxbKMkuELKEpwoN6LIoa4ZcwaYkpWrwapNiZhzgFLVJa_yjRJH5PPeNqTB62T9gHZrQ9dNM2qAaf-igon6sqf6GO5HTINufbLYNKbDMCatgFWqEopNJOzJaf2UIjrdR9-a-E9zpucf6Pmmej6xnn6guQY5iU6e7E2ypnHRdNanFyUUIMtSzFy253zo3-b79TX_mtN97cR_xsKgpA</recordid><startdate>20111210</startdate><enddate>20111210</enddate><creator>Keisler, R</creator><creator>Reichardt, C. L</creator><creator>Aird, K. A</creator><creator>Benson, B. A</creator><creator>Bleem, L. E</creator><creator>Carlstrom, J. E</creator><creator>Chang, C. L</creator><creator>Cho, H. M</creator><creator>Crawford, T. M</creator><creator>Crites, A. T</creator><creator>de Haan, T</creator><creator>Dobbs, M. A</creator><creator>Dudley, J</creator><creator>George, E. M</creator><creator>Halverson, N. W</creator><creator>Holder, G. P</creator><creator>Holzapfel, W. L</creator><creator>Hoover, S</creator><creator>Hou, Z</creator><creator>Hrubes, J. D</creator><creator>Joy, M</creator><creator>Knox, L</creator><creator>Lee, A. T</creator><creator>Leitch, E. M</creator><creator>Lueker, M</creator><creator>Luong-Van, D</creator><creator>McMahon, J. J</creator><creator>Mehl, J</creator><creator>Meyer, S. S</creator><creator>Millea, M</creator><creator>Mohr, J. J</creator><creator>Montroy, T. E</creator><creator>Natoli, T</creator><creator>Padin, S</creator><creator>Plagge, T</creator><creator>Pryke, C</creator><creator>Ruhl, J. E</creator><creator>Schaffer, K. K</creator><creator>Shaw, L</creator><creator>Shirokoff, E</creator><creator>Spieler, H. G</creator><creator>Staniszewski, Z</creator><creator>Stark, A. A</creator><creator>Story, K</creator><creator>van Engelen, A</creator><creator>Vanderlinde, K</creator><creator>Vieira, J. D</creator><creator>Williamson, R</creator><creator>Zahn, O</creator><general>IOP Publishing</general><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>OTOTI</scope></search><sort><creationdate>20111210</creationdate><title>A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope</title><author>Keisler, R ; Reichardt, C. L ; Aird, K. A ; Benson, B. A ; Bleem, L. E ; Carlstrom, J. E ; Chang, C. L ; Cho, H. M ; Crawford, T. M ; Crites, A. T ; de Haan, T ; Dobbs, M. A ; Dudley, J ; George, E. M ; Halverson, N. W ; Holder, G. P ; Holzapfel, W. L ; Hoover, S ; Hou, Z ; Hrubes, J. D ; Joy, M ; Knox, L ; Lee, A. T ; Leitch, E. M ; Lueker, M ; Luong-Van, D ; McMahon, J. J ; Mehl, J ; Meyer, S. S ; Millea, M ; Mohr, J. J ; Montroy, T. E ; Natoli, T ; Padin, S ; Plagge, T ; Pryke, C ; Ruhl, J. E ; Schaffer, K. K ; Shaw, L ; Shirokoff, E ; Spieler, H. G ; Staniszewski, Z ; Stark, A. A ; Story, K ; van Engelen, A ; Vanderlinde, K ; Vieira, J. D ; Williamson, R ; Zahn, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-dd1e25803af0b982f58862f36b3542dd00fa20987fd2c9b6ee412269d6174b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ABUNDANCE</topic><topic>Astronomy</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>BARYONS</topic><topic>COSMOLOGICAL MODELS</topic><topic>COSMOLOGY</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>GALAXY CLUSTERS</topic><topic>HELIUM</topic><topic>NEUTRINOS</topic><topic>OSCILLATIONS</topic><topic>RED SHIFT</topic><topic>RELATIVISTIC RANGE</topic><topic>RELICT RADIATION</topic><topic>TELESCOPES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keisler, R</creatorcontrib><creatorcontrib>Reichardt, C. L</creatorcontrib><creatorcontrib>Aird, K. A</creatorcontrib><creatorcontrib>Benson, B. A</creatorcontrib><creatorcontrib>Bleem, L. E</creatorcontrib><creatorcontrib>Carlstrom, J. E</creatorcontrib><creatorcontrib>Chang, C. L</creatorcontrib><creatorcontrib>Cho, H. M</creatorcontrib><creatorcontrib>Crawford, T. M</creatorcontrib><creatorcontrib>Crites, A. T</creatorcontrib><creatorcontrib>de Haan, T</creatorcontrib><creatorcontrib>Dobbs, M. A</creatorcontrib><creatorcontrib>Dudley, J</creatorcontrib><creatorcontrib>George, E. M</creatorcontrib><creatorcontrib>Halverson, N. W</creatorcontrib><creatorcontrib>Holder, G. P</creatorcontrib><creatorcontrib>Holzapfel, W. L</creatorcontrib><creatorcontrib>Hoover, S</creatorcontrib><creatorcontrib>Hou, Z</creatorcontrib><creatorcontrib>Hrubes, J. D</creatorcontrib><creatorcontrib>Joy, M</creatorcontrib><creatorcontrib>Knox, L</creatorcontrib><creatorcontrib>Lee, A. T</creatorcontrib><creatorcontrib>Leitch, E. M</creatorcontrib><creatorcontrib>Lueker, M</creatorcontrib><creatorcontrib>Luong-Van, D</creatorcontrib><creatorcontrib>McMahon, J. J</creatorcontrib><creatorcontrib>Mehl, J</creatorcontrib><creatorcontrib>Meyer, S. S</creatorcontrib><creatorcontrib>Millea, M</creatorcontrib><creatorcontrib>Mohr, J. J</creatorcontrib><creatorcontrib>Montroy, T. E</creatorcontrib><creatorcontrib>Natoli, T</creatorcontrib><creatorcontrib>Padin, S</creatorcontrib><creatorcontrib>Plagge, T</creatorcontrib><creatorcontrib>Pryke, C</creatorcontrib><creatorcontrib>Ruhl, J. E</creatorcontrib><creatorcontrib>Schaffer, K. K</creatorcontrib><creatorcontrib>Shaw, L</creatorcontrib><creatorcontrib>Shirokoff, E</creatorcontrib><creatorcontrib>Spieler, H. G</creatorcontrib><creatorcontrib>Staniszewski, Z</creatorcontrib><creatorcontrib>Stark, A. A</creatorcontrib><creatorcontrib>Story, K</creatorcontrib><creatorcontrib>van Engelen, A</creatorcontrib><creatorcontrib>Vanderlinde, K</creatorcontrib><creatorcontrib>Vieira, J. D</creatorcontrib><creatorcontrib>Williamson, R</creatorcontrib><creatorcontrib>Zahn, O</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Keisler, R</au><au>Reichardt, C. L</au><au>Aird, K. A</au><au>Benson, B. A</au><au>Bleem, L. E</au><au>Carlstrom, J. E</au><au>Chang, C. L</au><au>Cho, H. M</au><au>Crawford, T. M</au><au>Crites, A. T</au><au>de Haan, T</au><au>Dobbs, M. A</au><au>Dudley, J</au><au>George, E. M</au><au>Halverson, N. W</au><au>Holder, G. P</au><au>Holzapfel, W. L</au><au>Hoover, S</au><au>Hou, Z</au><au>Hrubes, J. D</au><au>Joy, M</au><au>Knox, L</au><au>Lee, A. T</au><au>Leitch, E. M</au><au>Lueker, M</au><au>Luong-Van, D</au><au>McMahon, J. J</au><au>Mehl, J</au><au>Meyer, S. S</au><au>Millea, M</au><au>Mohr, J. J</au><au>Montroy, T. E</au><au>Natoli, T</au><au>Padin, S</au><au>Plagge, T</au><au>Pryke, C</au><au>Ruhl, J. E</au><au>Schaffer, K. K</au><au>Shaw, L</au><au>Shirokoff, E</au><au>Spieler, H. G</au><au>Staniszewski, Z</au><au>Stark, A. A</au><au>Story, K</au><au>van Engelen, A</au><au>Vanderlinde, K</au><au>Vieira, J. D</au><au>Williamson, R</au><au>Zahn, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope</atitle><jtitle>The Astrophysical journal</jtitle><date>2011-12-10</date><risdate>2011</risdate><volume>743</volume><issue>1</issue><spage>28</spage><epage>jQuery1323900683817='48'</epage><pages>28-jQuery1323900683817='48'</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) using data from the South Pole Telescope (SPT). The data consist of 790 deg2 of sky observed at 150 GHz during 2008 and 2009. Here we present the power spectrum over the multipole range 650 &lt; l &lt; 3000, where it is dominated by primary CMB anisotropy. We combine this power spectrum with the power spectra from the seven-year Wilkinson Microwave Anisotropy Probe (WMAP) data release to constrain cosmological models. We find that the SPT and WMAP data are consistent with each other and, when combined, are well fit by a spatially flat, Delta *LCDM cosmological model. The SPT+WMAP constraint on the spectral index of scalar fluctuations is ns = 0.9663 ? 0.0112. We detect, at ~5 Delta *s significance, the effect of gravitational lensing on the CMB power spectrum, and find its amplitude to be consistent with the Delta *LCDM cosmological model. We explore a number of extensions beyond the Delta *LCDM model. Each extension is tested independently, although there are degeneracies between some of the extension parameters. We constrain the tensor-to-scalar ratio to be r &lt; 0.21 (95% CL) and constrain the running of the scalar spectral index to be dns /dln k = --0.024 ? 0.013. We strongly detect the effects of primordial helium and neutrinos on the CMB; a model without helium is rejected at 7.7 Delta *s, while a model without neutrinos is rejected at 7.5 Delta *s. The primordial helium abundance is measured to be Yp = 0.296 ? 0.030, and the effective number of relativistic species is measured to be N eff = 3.85 ? 0.62. The constraints on these models are strengthened when the CMB data are combined with measurements of the Hubble constant and the baryon acoustic oscillation feature. Notable improvements include ns = 0.9668 ? 0.0093, r &lt; 0.17 (95% CL), and N eff = 3.86 ? 0.42. The SPT+WMAP data show a mild preference for low power in the CMB damping tail, and while this preference may be accommodated by models that have a negative spectral running, a high primordial helium abundance, or a high effective number of relativistic species, such models are disfavored by the abundance of low-redshift galaxy clusters.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0004-637X/743/1/28</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2011-12, Vol.743 (1), p.28-jQuery1323900683817='48'
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_miscellaneous_920797390
source Institute of Physics Open Access Journal Titles
subjects ABUNDANCE
Astronomy
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
BARYONS
COSMOLOGICAL MODELS
COSMOLOGY
Earth, ocean, space
Exact sciences and technology
GALAXY CLUSTERS
HELIUM
NEUTRINOS
OSCILLATIONS
RED SHIFT
RELATIVISTIC RANGE
RELICT RADIATION
TELESCOPES
title A Measurement of the Damping Tail of the Cosmic Microwave Background Power Spectrum with the South Pole Telescope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Measurement%20of%20the%20Damping%20Tail%20of%20the%20Cosmic%20Microwave%20Background%20Power%20Spectrum%20with%20the%20South%20Pole%20Telescope&rft.jtitle=The%20Astrophysical%20journal&rft.au=Keisler,%20R&rft.date=2011-12-10&rft.volume=743&rft.issue=1&rft.spage=28&rft.epage=jQuery1323900683817='48'&rft.pages=28-jQuery1323900683817='48'&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/743/1/28&rft_dat=%3Cproquest_O3W%3E920797390%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920797390&rft_id=info:pmid/&rfr_iscdi=true