Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification
Pompe disease is caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene, which encodes GAA. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we repo...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2011-12, Vol.20 (24), p.4851-4864 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4864 |
---|---|
container_issue | 24 |
container_start_page | 4851 |
container_title | Human molecular genetics |
container_volume | 20 |
creator | Huang, Hsiang-Po Chen, Pin-Hsun Hwu, Wuh-Liang Chuang, Ching-Yu Chien, Yin-Hsiu Stone, Lee Chien, Chung-Liang Li, Li-Tzu Chiang, Shu-Chuan Chen, Hsin-Fu Ho, Hong-Nerng Chen, Chung-Hsuan Kuo, Hung-Chih |
description | Pompe disease is caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene, which encodes GAA. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease-induced pluripotent stem cells (PomD-iPSCs) from two patients with different GAA mutations and their potential for pathogenesis modeling, drug testing and disease marker identification. PomD-iPSCs maintained pluripotent features and had low GAA activity and high glycogen content. Cardiomyocyte-like cells (CMLCs) differentiated from PomD-iPSCs recapitulated the hallmark Pompe disease pathophysiological phenotypes, including high levels of glycogen and multiple ultrastructural aberrances. Drug rescue assessment showed that exposure of PomD-iPSC-derived CMLCs to recombinant human GAA reversed the major pathologic phenotypes. Furthermore, l-carnitine treatment reduced defective cellular respiration in the diseased cells. By comparative transcriptome analysis, we identified glycogen metabolism, lysosome and mitochondria-related marker genes whose expression robustly correlated with the therapeutic effect of drug treatment in PomD-iPSC-derived CMLCs. Collectively, these results demonstrate that PomD-iPSCs are a promising in vitro disease model for the development of novel therapeutic strategies for Pompe disease. |
doi_str_mv | 10.1093/hmg/ddr424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920795323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/hmg/ddr424</oup_id><sourcerecordid>920795323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-7ba1b474ed7f16106478315585aaf4b9407986d0bfff85110b7716b87941b6b53</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaTZpL_0BQZdSCHUysvXlYwlNUgi0h_RsJGu0UWtLjmQfAv3x9bKb5NaehoGHZ-blJeQDg3MGbXNxP24vnMu85q_IhnEJVQ26eU020EpeyRbkETku5RcAk7xRb8lRzdpaguYb8udmGU2kP9I4IXWhoClYheiWHh2dhiWHKc0YZ1pmHGmPw1CoT5lOZr5PW4xYQqFjcjiEuP1MXV62dMYyrxs10T0p6Wjyb8w0uNUVfOjNHFJ8R954MxR8f5gn5OfV17vLm-r2-_W3yy-3Vc81zJWyhlmuODrlmWQgudINE0ILYzy3LQfVaunAeu-1YAysUkxarVrOrLSiOSGf9t4pp4dl_a4bQ9llMRHTUrq2Xg2iqZv_kyCkBs125Nme7HMqJaPvphzWlI8dg25XS7fW0u1rWeHTg3axI7pn9KmHFfh4AEzpzeCziX0oL5yoVSMUe-HSMv3r4F89uKPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905680813</pqid></control><display><type>article</type><title>Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification</title><source>MEDLINE</source><source>Oxford Academic Journals (OUP)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Huang, Hsiang-Po ; Chen, Pin-Hsun ; Hwu, Wuh-Liang ; Chuang, Ching-Yu ; Chien, Yin-Hsiu ; Stone, Lee ; Chien, Chung-Liang ; Li, Li-Tzu ; Chiang, Shu-Chuan ; Chen, Hsin-Fu ; Ho, Hong-Nerng ; Chen, Chung-Hsuan ; Kuo, Hung-Chih</creator><creatorcontrib>Huang, Hsiang-Po ; Chen, Pin-Hsun ; Hwu, Wuh-Liang ; Chuang, Ching-Yu ; Chien, Yin-Hsiu ; Stone, Lee ; Chien, Chung-Liang ; Li, Li-Tzu ; Chiang, Shu-Chuan ; Chen, Hsin-Fu ; Ho, Hong-Nerng ; Chen, Chung-Hsuan ; Kuo, Hung-Chih</creatorcontrib><description>Pompe disease is caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene, which encodes GAA. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease-induced pluripotent stem cells (PomD-iPSCs) from two patients with different GAA mutations and their potential for pathogenesis modeling, drug testing and disease marker identification. PomD-iPSCs maintained pluripotent features and had low GAA activity and high glycogen content. Cardiomyocyte-like cells (CMLCs) differentiated from PomD-iPSCs recapitulated the hallmark Pompe disease pathophysiological phenotypes, including high levels of glycogen and multiple ultrastructural aberrances. Drug rescue assessment showed that exposure of PomD-iPSC-derived CMLCs to recombinant human GAA reversed the major pathologic phenotypes. Furthermore, l-carnitine treatment reduced defective cellular respiration in the diseased cells. By comparative transcriptome analysis, we identified glycogen metabolism, lysosome and mitochondria-related marker genes whose expression robustly correlated with the therapeutic effect of drug treatment in PomD-iPSC-derived CMLCs. Collectively, these results demonstrate that PomD-iPSCs are a promising in vitro disease model for the development of novel therapeutic strategies for Pompe disease.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddr424</identifier><identifier>PMID: 21926084</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Adenine - analogs & derivatives ; Adenine - pharmacology ; Adenine - therapeutic use ; alpha-Glucosidases - pharmacology ; alpha-Glucosidases - therapeutic use ; Animals ; Base Sequence ; Biological and medical sciences ; Biomarkers - metabolism ; Carbohydrates (enzymatic deficiencies). Glycogenosis ; Carnitine - pharmacology ; Carnitine - therapeutic use ; Cell Differentiation - drug effects ; Drug Monitoring ; Errors of metabolism ; Fibroblasts - drug effects ; Fibroblasts - pathology ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; Glycogen Storage Disease Type II - drug therapy ; Glycogen Storage Disease Type II - pathology ; Glycogen Storage Disease Type II - physiopathology ; Humans ; Induced Pluripotent Stem Cells - drug effects ; Induced Pluripotent Stem Cells - pathology ; Medical sciences ; Metabolic diseases ; Mice ; Models, Biological ; Molecular and cellular biology ; Molecular Sequence Data ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - pathology ; Myocytes, Cardiac - ultrastructure</subject><ispartof>Human molecular genetics, 2011-12, Vol.20 (24), p.4851-4864</ispartof><rights>The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-7ba1b474ed7f16106478315585aaf4b9407986d0bfff85110b7716b87941b6b53</citedby><cites>FETCH-LOGICAL-c480t-7ba1b474ed7f16106478315585aaf4b9407986d0bfff85110b7716b87941b6b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25273571$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21926084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Hsiang-Po</creatorcontrib><creatorcontrib>Chen, Pin-Hsun</creatorcontrib><creatorcontrib>Hwu, Wuh-Liang</creatorcontrib><creatorcontrib>Chuang, Ching-Yu</creatorcontrib><creatorcontrib>Chien, Yin-Hsiu</creatorcontrib><creatorcontrib>Stone, Lee</creatorcontrib><creatorcontrib>Chien, Chung-Liang</creatorcontrib><creatorcontrib>Li, Li-Tzu</creatorcontrib><creatorcontrib>Chiang, Shu-Chuan</creatorcontrib><creatorcontrib>Chen, Hsin-Fu</creatorcontrib><creatorcontrib>Ho, Hong-Nerng</creatorcontrib><creatorcontrib>Chen, Chung-Hsuan</creatorcontrib><creatorcontrib>Kuo, Hung-Chih</creatorcontrib><title>Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Pompe disease is caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene, which encodes GAA. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease-induced pluripotent stem cells (PomD-iPSCs) from two patients with different GAA mutations and their potential for pathogenesis modeling, drug testing and disease marker identification. PomD-iPSCs maintained pluripotent features and had low GAA activity and high glycogen content. Cardiomyocyte-like cells (CMLCs) differentiated from PomD-iPSCs recapitulated the hallmark Pompe disease pathophysiological phenotypes, including high levels of glycogen and multiple ultrastructural aberrances. Drug rescue assessment showed that exposure of PomD-iPSC-derived CMLCs to recombinant human GAA reversed the major pathologic phenotypes. Furthermore, l-carnitine treatment reduced defective cellular respiration in the diseased cells. By comparative transcriptome analysis, we identified glycogen metabolism, lysosome and mitochondria-related marker genes whose expression robustly correlated with the therapeutic effect of drug treatment in PomD-iPSC-derived CMLCs. Collectively, these results demonstrate that PomD-iPSCs are a promising in vitro disease model for the development of novel therapeutic strategies for Pompe disease.</description><subject>Adenine - analogs & derivatives</subject><subject>Adenine - pharmacology</subject><subject>Adenine - therapeutic use</subject><subject>alpha-Glucosidases - pharmacology</subject><subject>alpha-Glucosidases - therapeutic use</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biomarkers - metabolism</subject><subject>Carbohydrates (enzymatic deficiencies). Glycogenosis</subject><subject>Carnitine - pharmacology</subject><subject>Carnitine - therapeutic use</subject><subject>Cell Differentiation - drug effects</subject><subject>Drug Monitoring</subject><subject>Errors of metabolism</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - pathology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Glycogen Storage Disease Type II - drug therapy</subject><subject>Glycogen Storage Disease Type II - pathology</subject><subject>Glycogen Storage Disease Type II - physiopathology</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - drug effects</subject><subject>Induced Pluripotent Stem Cells - pathology</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Molecular and cellular biology</subject><subject>Molecular Sequence Data</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - pathology</subject><subject>Myocytes, Cardiac - ultrastructure</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVpaTZpL_0BQZdSCHUysvXlYwlNUgi0h_RsJGu0UWtLjmQfAv3x9bKb5NaehoGHZ-blJeQDg3MGbXNxP24vnMu85q_IhnEJVQ26eU020EpeyRbkETku5RcAk7xRb8lRzdpaguYb8udmGU2kP9I4IXWhoClYheiWHh2dhiWHKc0YZ1pmHGmPw1CoT5lOZr5PW4xYQqFjcjiEuP1MXV62dMYyrxs10T0p6Wjyb8w0uNUVfOjNHFJ8R954MxR8f5gn5OfV17vLm-r2-_W3yy-3Vc81zJWyhlmuODrlmWQgudINE0ILYzy3LQfVaunAeu-1YAysUkxarVrOrLSiOSGf9t4pp4dl_a4bQ9llMRHTUrq2Xg2iqZv_kyCkBs125Nme7HMqJaPvphzWlI8dg25XS7fW0u1rWeHTg3axI7pn9KmHFfh4AEzpzeCziX0oL5yoVSMUe-HSMv3r4F89uKPs</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Huang, Hsiang-Po</creator><creator>Chen, Pin-Hsun</creator><creator>Hwu, Wuh-Liang</creator><creator>Chuang, Ching-Yu</creator><creator>Chien, Yin-Hsiu</creator><creator>Stone, Lee</creator><creator>Chien, Chung-Liang</creator><creator>Li, Li-Tzu</creator><creator>Chiang, Shu-Chuan</creator><creator>Chen, Hsin-Fu</creator><creator>Ho, Hong-Nerng</creator><creator>Chen, Chung-Hsuan</creator><creator>Kuo, Hung-Chih</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20111215</creationdate><title>Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification</title><author>Huang, Hsiang-Po ; Chen, Pin-Hsun ; Hwu, Wuh-Liang ; Chuang, Ching-Yu ; Chien, Yin-Hsiu ; Stone, Lee ; Chien, Chung-Liang ; Li, Li-Tzu ; Chiang, Shu-Chuan ; Chen, Hsin-Fu ; Ho, Hong-Nerng ; Chen, Chung-Hsuan ; Kuo, Hung-Chih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-7ba1b474ed7f16106478315585aaf4b9407986d0bfff85110b7716b87941b6b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenine - analogs & derivatives</topic><topic>Adenine - pharmacology</topic><topic>Adenine - therapeutic use</topic><topic>alpha-Glucosidases - pharmacology</topic><topic>alpha-Glucosidases - therapeutic use</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biomarkers - metabolism</topic><topic>Carbohydrates (enzymatic deficiencies). Glycogenosis</topic><topic>Carnitine - pharmacology</topic><topic>Carnitine - therapeutic use</topic><topic>Cell Differentiation - drug effects</topic><topic>Drug Monitoring</topic><topic>Errors of metabolism</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - pathology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Glycogen Storage Disease Type II - drug therapy</topic><topic>Glycogen Storage Disease Type II - pathology</topic><topic>Glycogen Storage Disease Type II - physiopathology</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - drug effects</topic><topic>Induced Pluripotent Stem Cells - pathology</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Molecular and cellular biology</topic><topic>Molecular Sequence Data</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - pathology</topic><topic>Myocytes, Cardiac - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hsiang-Po</creatorcontrib><creatorcontrib>Chen, Pin-Hsun</creatorcontrib><creatorcontrib>Hwu, Wuh-Liang</creatorcontrib><creatorcontrib>Chuang, Ching-Yu</creatorcontrib><creatorcontrib>Chien, Yin-Hsiu</creatorcontrib><creatorcontrib>Stone, Lee</creatorcontrib><creatorcontrib>Chien, Chung-Liang</creatorcontrib><creatorcontrib>Li, Li-Tzu</creatorcontrib><creatorcontrib>Chiang, Shu-Chuan</creatorcontrib><creatorcontrib>Chen, Hsin-Fu</creatorcontrib><creatorcontrib>Ho, Hong-Nerng</creatorcontrib><creatorcontrib>Chen, Chung-Hsuan</creatorcontrib><creatorcontrib>Kuo, Hung-Chih</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hsiang-Po</au><au>Chen, Pin-Hsun</au><au>Hwu, Wuh-Liang</au><au>Chuang, Ching-Yu</au><au>Chien, Yin-Hsiu</au><au>Stone, Lee</au><au>Chien, Chung-Liang</au><au>Li, Li-Tzu</au><au>Chiang, Shu-Chuan</au><au>Chen, Hsin-Fu</au><au>Ho, Hong-Nerng</au><au>Chen, Chung-Hsuan</au><au>Kuo, Hung-Chih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2011-12-15</date><risdate>2011</risdate><volume>20</volume><issue>24</issue><spage>4851</spage><epage>4864</epage><pages>4851-4864</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Pompe disease is caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene, which encodes GAA. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease-induced pluripotent stem cells (PomD-iPSCs) from two patients with different GAA mutations and their potential for pathogenesis modeling, drug testing and disease marker identification. PomD-iPSCs maintained pluripotent features and had low GAA activity and high glycogen content. Cardiomyocyte-like cells (CMLCs) differentiated from PomD-iPSCs recapitulated the hallmark Pompe disease pathophysiological phenotypes, including high levels of glycogen and multiple ultrastructural aberrances. Drug rescue assessment showed that exposure of PomD-iPSC-derived CMLCs to recombinant human GAA reversed the major pathologic phenotypes. Furthermore, l-carnitine treatment reduced defective cellular respiration in the diseased cells. By comparative transcriptome analysis, we identified glycogen metabolism, lysosome and mitochondria-related marker genes whose expression robustly correlated with the therapeutic effect of drug treatment in PomD-iPSC-derived CMLCs. Collectively, these results demonstrate that PomD-iPSCs are a promising in vitro disease model for the development of novel therapeutic strategies for Pompe disease.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>21926084</pmid><doi>10.1093/hmg/ddr424</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2011-12, Vol.20 (24), p.4851-4864 |
issn | 0964-6906 1460-2083 |
language | eng |
recordid | cdi_proquest_miscellaneous_920795323 |
source | MEDLINE; Oxford Academic Journals (OUP); Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Adenine - analogs & derivatives Adenine - pharmacology Adenine - therapeutic use alpha-Glucosidases - pharmacology alpha-Glucosidases - therapeutic use Animals Base Sequence Biological and medical sciences Biomarkers - metabolism Carbohydrates (enzymatic deficiencies). Glycogenosis Carnitine - pharmacology Carnitine - therapeutic use Cell Differentiation - drug effects Drug Monitoring Errors of metabolism Fibroblasts - drug effects Fibroblasts - pathology Fundamental and applied biological sciences. Psychology Genetics of eukaryotes. Biological and molecular evolution Glycogen Storage Disease Type II - drug therapy Glycogen Storage Disease Type II - pathology Glycogen Storage Disease Type II - physiopathology Humans Induced Pluripotent Stem Cells - drug effects Induced Pluripotent Stem Cells - pathology Medical sciences Metabolic diseases Mice Models, Biological Molecular and cellular biology Molecular Sequence Data Myocytes, Cardiac - drug effects Myocytes, Cardiac - pathology Myocytes, Cardiac - ultrastructure |
title | Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20Pompe%20disease-induced%20pluripotent%20stem%20cells%20for%20pathogenesis%20modeling,%20drug%20testing%20and%20disease%20marker%20identification&rft.jtitle=Human%20molecular%20genetics&rft.au=Huang,%20Hsiang-Po&rft.date=2011-12-15&rft.volume=20&rft.issue=24&rft.spage=4851&rft.epage=4864&rft.pages=4851-4864&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddr424&rft_dat=%3Cproquest_cross%3E920795323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=905680813&rft_id=info:pmid/21926084&rft_oup_id=10.1093/hmg/ddr424&rfr_iscdi=true |