Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification

Pompe disease is caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene, which encodes GAA. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we repo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2011-12, Vol.20 (24), p.4851-4864
Hauptverfasser: Huang, Hsiang-Po, Chen, Pin-Hsun, Hwu, Wuh-Liang, Chuang, Ching-Yu, Chien, Yin-Hsiu, Stone, Lee, Chien, Chung-Liang, Li, Li-Tzu, Chiang, Shu-Chuan, Chen, Hsin-Fu, Ho, Hong-Nerng, Chen, Chung-Hsuan, Kuo, Hung-Chih
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4864
container_issue 24
container_start_page 4851
container_title Human molecular genetics
container_volume 20
creator Huang, Hsiang-Po
Chen, Pin-Hsun
Hwu, Wuh-Liang
Chuang, Ching-Yu
Chien, Yin-Hsiu
Stone, Lee
Chien, Chung-Liang
Li, Li-Tzu
Chiang, Shu-Chuan
Chen, Hsin-Fu
Ho, Hong-Nerng
Chen, Chung-Hsuan
Kuo, Hung-Chih
description Pompe disease is caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene, which encodes GAA. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease-induced pluripotent stem cells (PomD-iPSCs) from two patients with different GAA mutations and their potential for pathogenesis modeling, drug testing and disease marker identification. PomD-iPSCs maintained pluripotent features and had low GAA activity and high glycogen content. Cardiomyocyte-like cells (CMLCs) differentiated from PomD-iPSCs recapitulated the hallmark Pompe disease pathophysiological phenotypes, including high levels of glycogen and multiple ultrastructural aberrances. Drug rescue assessment showed that exposure of PomD-iPSC-derived CMLCs to recombinant human GAA reversed the major pathologic phenotypes. Furthermore, l-carnitine treatment reduced defective cellular respiration in the diseased cells. By comparative transcriptome analysis, we identified glycogen metabolism, lysosome and mitochondria-related marker genes whose expression robustly correlated with the therapeutic effect of drug treatment in PomD-iPSC-derived CMLCs. Collectively, these results demonstrate that PomD-iPSCs are a promising in vitro disease model for the development of novel therapeutic strategies for Pompe disease.
doi_str_mv 10.1093/hmg/ddr424
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920795323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/hmg/ddr424</oup_id><sourcerecordid>920795323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-7ba1b474ed7f16106478315585aaf4b9407986d0bfff85110b7716b87941b6b53</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaTZpL_0BQZdSCHUysvXlYwlNUgi0h_RsJGu0UWtLjmQfAv3x9bKb5NaehoGHZ-blJeQDg3MGbXNxP24vnMu85q_IhnEJVQ26eU020EpeyRbkETku5RcAk7xRb8lRzdpaguYb8udmGU2kP9I4IXWhoClYheiWHh2dhiWHKc0YZ1pmHGmPw1CoT5lOZr5PW4xYQqFjcjiEuP1MXV62dMYyrxs10T0p6Wjyb8w0uNUVfOjNHFJ8R954MxR8f5gn5OfV17vLm-r2-_W3yy-3Vc81zJWyhlmuODrlmWQgudINE0ILYzy3LQfVaunAeu-1YAysUkxarVrOrLSiOSGf9t4pp4dl_a4bQ9llMRHTUrq2Xg2iqZv_kyCkBs125Nme7HMqJaPvphzWlI8dg25XS7fW0u1rWeHTg3axI7pn9KmHFfh4AEzpzeCziX0oL5yoVSMUe-HSMv3r4F89uKPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>905680813</pqid></control><display><type>article</type><title>Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification</title><source>MEDLINE</source><source>Oxford Academic Journals (OUP)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Huang, Hsiang-Po ; Chen, Pin-Hsun ; Hwu, Wuh-Liang ; Chuang, Ching-Yu ; Chien, Yin-Hsiu ; Stone, Lee ; Chien, Chung-Liang ; Li, Li-Tzu ; Chiang, Shu-Chuan ; Chen, Hsin-Fu ; Ho, Hong-Nerng ; Chen, Chung-Hsuan ; Kuo, Hung-Chih</creator><creatorcontrib>Huang, Hsiang-Po ; Chen, Pin-Hsun ; Hwu, Wuh-Liang ; Chuang, Ching-Yu ; Chien, Yin-Hsiu ; Stone, Lee ; Chien, Chung-Liang ; Li, Li-Tzu ; Chiang, Shu-Chuan ; Chen, Hsin-Fu ; Ho, Hong-Nerng ; Chen, Chung-Hsuan ; Kuo, Hung-Chih</creatorcontrib><description>Pompe disease is caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene, which encodes GAA. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease-induced pluripotent stem cells (PomD-iPSCs) from two patients with different GAA mutations and their potential for pathogenesis modeling, drug testing and disease marker identification. PomD-iPSCs maintained pluripotent features and had low GAA activity and high glycogen content. Cardiomyocyte-like cells (CMLCs) differentiated from PomD-iPSCs recapitulated the hallmark Pompe disease pathophysiological phenotypes, including high levels of glycogen and multiple ultrastructural aberrances. Drug rescue assessment showed that exposure of PomD-iPSC-derived CMLCs to recombinant human GAA reversed the major pathologic phenotypes. Furthermore, l-carnitine treatment reduced defective cellular respiration in the diseased cells. By comparative transcriptome analysis, we identified glycogen metabolism, lysosome and mitochondria-related marker genes whose expression robustly correlated with the therapeutic effect of drug treatment in PomD-iPSC-derived CMLCs. Collectively, these results demonstrate that PomD-iPSCs are a promising in vitro disease model for the development of novel therapeutic strategies for Pompe disease.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddr424</identifier><identifier>PMID: 21926084</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Adenine - analogs &amp; derivatives ; Adenine - pharmacology ; Adenine - therapeutic use ; alpha-Glucosidases - pharmacology ; alpha-Glucosidases - therapeutic use ; Animals ; Base Sequence ; Biological and medical sciences ; Biomarkers - metabolism ; Carbohydrates (enzymatic deficiencies). Glycogenosis ; Carnitine - pharmacology ; Carnitine - therapeutic use ; Cell Differentiation - drug effects ; Drug Monitoring ; Errors of metabolism ; Fibroblasts - drug effects ; Fibroblasts - pathology ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; Glycogen Storage Disease Type II - drug therapy ; Glycogen Storage Disease Type II - pathology ; Glycogen Storage Disease Type II - physiopathology ; Humans ; Induced Pluripotent Stem Cells - drug effects ; Induced Pluripotent Stem Cells - pathology ; Medical sciences ; Metabolic diseases ; Mice ; Models, Biological ; Molecular and cellular biology ; Molecular Sequence Data ; Myocytes, Cardiac - drug effects ; Myocytes, Cardiac - pathology ; Myocytes, Cardiac - ultrastructure</subject><ispartof>Human molecular genetics, 2011-12, Vol.20 (24), p.4851-4864</ispartof><rights>The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-7ba1b474ed7f16106478315585aaf4b9407986d0bfff85110b7716b87941b6b53</citedby><cites>FETCH-LOGICAL-c480t-7ba1b474ed7f16106478315585aaf4b9407986d0bfff85110b7716b87941b6b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25273571$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21926084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Hsiang-Po</creatorcontrib><creatorcontrib>Chen, Pin-Hsun</creatorcontrib><creatorcontrib>Hwu, Wuh-Liang</creatorcontrib><creatorcontrib>Chuang, Ching-Yu</creatorcontrib><creatorcontrib>Chien, Yin-Hsiu</creatorcontrib><creatorcontrib>Stone, Lee</creatorcontrib><creatorcontrib>Chien, Chung-Liang</creatorcontrib><creatorcontrib>Li, Li-Tzu</creatorcontrib><creatorcontrib>Chiang, Shu-Chuan</creatorcontrib><creatorcontrib>Chen, Hsin-Fu</creatorcontrib><creatorcontrib>Ho, Hong-Nerng</creatorcontrib><creatorcontrib>Chen, Chung-Hsuan</creatorcontrib><creatorcontrib>Kuo, Hung-Chih</creatorcontrib><title>Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Pompe disease is caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene, which encodes GAA. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease-induced pluripotent stem cells (PomD-iPSCs) from two patients with different GAA mutations and their potential for pathogenesis modeling, drug testing and disease marker identification. PomD-iPSCs maintained pluripotent features and had low GAA activity and high glycogen content. Cardiomyocyte-like cells (CMLCs) differentiated from PomD-iPSCs recapitulated the hallmark Pompe disease pathophysiological phenotypes, including high levels of glycogen and multiple ultrastructural aberrances. Drug rescue assessment showed that exposure of PomD-iPSC-derived CMLCs to recombinant human GAA reversed the major pathologic phenotypes. Furthermore, l-carnitine treatment reduced defective cellular respiration in the diseased cells. By comparative transcriptome analysis, we identified glycogen metabolism, lysosome and mitochondria-related marker genes whose expression robustly correlated with the therapeutic effect of drug treatment in PomD-iPSC-derived CMLCs. Collectively, these results demonstrate that PomD-iPSCs are a promising in vitro disease model for the development of novel therapeutic strategies for Pompe disease.</description><subject>Adenine - analogs &amp; derivatives</subject><subject>Adenine - pharmacology</subject><subject>Adenine - therapeutic use</subject><subject>alpha-Glucosidases - pharmacology</subject><subject>alpha-Glucosidases - therapeutic use</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biomarkers - metabolism</subject><subject>Carbohydrates (enzymatic deficiencies). Glycogenosis</subject><subject>Carnitine - pharmacology</subject><subject>Carnitine - therapeutic use</subject><subject>Cell Differentiation - drug effects</subject><subject>Drug Monitoring</subject><subject>Errors of metabolism</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - pathology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Glycogen Storage Disease Type II - drug therapy</subject><subject>Glycogen Storage Disease Type II - pathology</subject><subject>Glycogen Storage Disease Type II - physiopathology</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - drug effects</subject><subject>Induced Pluripotent Stem Cells - pathology</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Molecular and cellular biology</subject><subject>Molecular Sequence Data</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Myocytes, Cardiac - pathology</subject><subject>Myocytes, Cardiac - ultrastructure</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVpaTZpL_0BQZdSCHUysvXlYwlNUgi0h_RsJGu0UWtLjmQfAv3x9bKb5NaehoGHZ-blJeQDg3MGbXNxP24vnMu85q_IhnEJVQ26eU020EpeyRbkETku5RcAk7xRb8lRzdpaguYb8udmGU2kP9I4IXWhoClYheiWHh2dhiWHKc0YZ1pmHGmPw1CoT5lOZr5PW4xYQqFjcjiEuP1MXV62dMYyrxs10T0p6Wjyb8w0uNUVfOjNHFJ8R954MxR8f5gn5OfV17vLm-r2-_W3yy-3Vc81zJWyhlmuODrlmWQgudINE0ILYzy3LQfVaunAeu-1YAysUkxarVrOrLSiOSGf9t4pp4dl_a4bQ9llMRHTUrq2Xg2iqZv_kyCkBs125Nme7HMqJaPvphzWlI8dg25XS7fW0u1rWeHTg3axI7pn9KmHFfh4AEzpzeCziX0oL5yoVSMUe-HSMv3r4F89uKPs</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Huang, Hsiang-Po</creator><creator>Chen, Pin-Hsun</creator><creator>Hwu, Wuh-Liang</creator><creator>Chuang, Ching-Yu</creator><creator>Chien, Yin-Hsiu</creator><creator>Stone, Lee</creator><creator>Chien, Chung-Liang</creator><creator>Li, Li-Tzu</creator><creator>Chiang, Shu-Chuan</creator><creator>Chen, Hsin-Fu</creator><creator>Ho, Hong-Nerng</creator><creator>Chen, Chung-Hsuan</creator><creator>Kuo, Hung-Chih</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20111215</creationdate><title>Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification</title><author>Huang, Hsiang-Po ; Chen, Pin-Hsun ; Hwu, Wuh-Liang ; Chuang, Ching-Yu ; Chien, Yin-Hsiu ; Stone, Lee ; Chien, Chung-Liang ; Li, Li-Tzu ; Chiang, Shu-Chuan ; Chen, Hsin-Fu ; Ho, Hong-Nerng ; Chen, Chung-Hsuan ; Kuo, Hung-Chih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-7ba1b474ed7f16106478315585aaf4b9407986d0bfff85110b7716b87941b6b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenine - analogs &amp; derivatives</topic><topic>Adenine - pharmacology</topic><topic>Adenine - therapeutic use</topic><topic>alpha-Glucosidases - pharmacology</topic><topic>alpha-Glucosidases - therapeutic use</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biomarkers - metabolism</topic><topic>Carbohydrates (enzymatic deficiencies). Glycogenosis</topic><topic>Carnitine - pharmacology</topic><topic>Carnitine - therapeutic use</topic><topic>Cell Differentiation - drug effects</topic><topic>Drug Monitoring</topic><topic>Errors of metabolism</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - pathology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Glycogen Storage Disease Type II - drug therapy</topic><topic>Glycogen Storage Disease Type II - pathology</topic><topic>Glycogen Storage Disease Type II - physiopathology</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - drug effects</topic><topic>Induced Pluripotent Stem Cells - pathology</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Molecular and cellular biology</topic><topic>Molecular Sequence Data</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Myocytes, Cardiac - pathology</topic><topic>Myocytes, Cardiac - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hsiang-Po</creatorcontrib><creatorcontrib>Chen, Pin-Hsun</creatorcontrib><creatorcontrib>Hwu, Wuh-Liang</creatorcontrib><creatorcontrib>Chuang, Ching-Yu</creatorcontrib><creatorcontrib>Chien, Yin-Hsiu</creatorcontrib><creatorcontrib>Stone, Lee</creatorcontrib><creatorcontrib>Chien, Chung-Liang</creatorcontrib><creatorcontrib>Li, Li-Tzu</creatorcontrib><creatorcontrib>Chiang, Shu-Chuan</creatorcontrib><creatorcontrib>Chen, Hsin-Fu</creatorcontrib><creatorcontrib>Ho, Hong-Nerng</creatorcontrib><creatorcontrib>Chen, Chung-Hsuan</creatorcontrib><creatorcontrib>Kuo, Hung-Chih</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hsiang-Po</au><au>Chen, Pin-Hsun</au><au>Hwu, Wuh-Liang</au><au>Chuang, Ching-Yu</au><au>Chien, Yin-Hsiu</au><au>Stone, Lee</au><au>Chien, Chung-Liang</au><au>Li, Li-Tzu</au><au>Chiang, Shu-Chuan</au><au>Chen, Hsin-Fu</au><au>Ho, Hong-Nerng</au><au>Chen, Chung-Hsuan</au><au>Kuo, Hung-Chih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2011-12-15</date><risdate>2011</risdate><volume>20</volume><issue>24</issue><spage>4851</spage><epage>4864</epage><pages>4851-4864</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Pompe disease is caused by autosomal recessive mutations in the acid alpha-glucosidase (GAA) gene, which encodes GAA. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease-induced pluripotent stem cells (PomD-iPSCs) from two patients with different GAA mutations and their potential for pathogenesis modeling, drug testing and disease marker identification. PomD-iPSCs maintained pluripotent features and had low GAA activity and high glycogen content. Cardiomyocyte-like cells (CMLCs) differentiated from PomD-iPSCs recapitulated the hallmark Pompe disease pathophysiological phenotypes, including high levels of glycogen and multiple ultrastructural aberrances. Drug rescue assessment showed that exposure of PomD-iPSC-derived CMLCs to recombinant human GAA reversed the major pathologic phenotypes. Furthermore, l-carnitine treatment reduced defective cellular respiration in the diseased cells. By comparative transcriptome analysis, we identified glycogen metabolism, lysosome and mitochondria-related marker genes whose expression robustly correlated with the therapeutic effect of drug treatment in PomD-iPSC-derived CMLCs. Collectively, these results demonstrate that PomD-iPSCs are a promising in vitro disease model for the development of novel therapeutic strategies for Pompe disease.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>21926084</pmid><doi>10.1093/hmg/ddr424</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2011-12, Vol.20 (24), p.4851-4864
issn 0964-6906
1460-2083
language eng
recordid cdi_proquest_miscellaneous_920795323
source MEDLINE; Oxford Academic Journals (OUP); Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Adenine - analogs & derivatives
Adenine - pharmacology
Adenine - therapeutic use
alpha-Glucosidases - pharmacology
alpha-Glucosidases - therapeutic use
Animals
Base Sequence
Biological and medical sciences
Biomarkers - metabolism
Carbohydrates (enzymatic deficiencies). Glycogenosis
Carnitine - pharmacology
Carnitine - therapeutic use
Cell Differentiation - drug effects
Drug Monitoring
Errors of metabolism
Fibroblasts - drug effects
Fibroblasts - pathology
Fundamental and applied biological sciences. Psychology
Genetics of eukaryotes. Biological and molecular evolution
Glycogen Storage Disease Type II - drug therapy
Glycogen Storage Disease Type II - pathology
Glycogen Storage Disease Type II - physiopathology
Humans
Induced Pluripotent Stem Cells - drug effects
Induced Pluripotent Stem Cells - pathology
Medical sciences
Metabolic diseases
Mice
Models, Biological
Molecular and cellular biology
Molecular Sequence Data
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - pathology
Myocytes, Cardiac - ultrastructure
title Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20Pompe%20disease-induced%20pluripotent%20stem%20cells%20for%20pathogenesis%20modeling,%20drug%20testing%20and%20disease%20marker%20identification&rft.jtitle=Human%20molecular%20genetics&rft.au=Huang,%20Hsiang-Po&rft.date=2011-12-15&rft.volume=20&rft.issue=24&rft.spage=4851&rft.epage=4864&rft.pages=4851-4864&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddr424&rft_dat=%3Cproquest_cross%3E920795323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=905680813&rft_id=info:pmid/21926084&rft_oup_id=10.1093/hmg/ddr424&rfr_iscdi=true