Stationarity stopping criterion for matching pursuit—framework and encephalographic illustration
We present a new stopping criterion for the matching pursuit (MP) algorithm, based on evaluating stationarity of the residua of the consecutive MP iterations. The new stopping criterion is based on a model of a nonstationary signal, which assumes that the part of the signal that is of interest is no...
Gespeichert in:
Veröffentlicht in: | Biological cybernetics 2011-12, Vol.105 (5-6), p.287-290 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 290 |
---|---|
container_issue | 5-6 |
container_start_page | 287 |
container_title | Biological cybernetics |
container_volume | 105 |
creator | Kipiski, Lech |
description | We present a new stopping criterion for the matching pursuit (MP) algorithm, based on evaluating stationarity of the residua of the consecutive MP iterations. The new stopping criterion is based on a model of a nonstationary signal, which assumes that the part of the signal that is of interest is nonstationary and contaminated by a weakly stationary noise. Mean- and variance-stationarity of the residua obtained from each step of MP is evaluated by means of dedicated statistical tests—the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test and the White test, respectively. We illustrate the proposed concept by an example in which we analyse magnetoencephalographic (MEG) data. |
doi_str_mv | 10.1007/s00422-011-0443-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920231270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019637065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-ee6548fe7847f519c4aa84489d7079f02de85908b29cfb30c4b8022e613870383</originalsourceid><addsrcrecordid>eNqFkd2K1DAYhoOsuOPoBXgiZU_0pPrlp01yKIN_MOCBehzSTDqT2bapScoyZ16EV-iVmNrRBcFdCIS8eb43hAehZxheYQD-OgIwQkrAuATGaCkfoBVmNCecwwVaAWVQYgJwiR7HeAQASSr5CF0SArLCnKxQ8znp5Pygg0unIiY_jm7YFyYfbch50fpQ9DqZwxyPU4iTSz-__2iD7u2ND9eFHnaFHYwdD7rz-6DHgzOF67oppvC7-gl62Oou2qfnfY2-vnv7ZfOh3H56_3HzZlsaRutUWltXTLSWC8bbCkvDtBaMCbnjwGULZGdFJUE0RJq2oWBYI4AQW2MqOFBB1-jF0jsG_22yManeRWO7Tg_WT1FJAoRiktk1enkniWtRCciL348CljXlUFcZvfoHPfopDPnLSmLJK8ykzBBeIBN8jMG2agyu1-GUm9QsVS1SVZaqZqlqnnl-Lp6a3u7-TvyxmAGyADFfDXsbbl_-f-svqYqtUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919751499</pqid></control><display><type>article</type><title>Stationarity stopping criterion for matching pursuit—framework and encephalographic illustration</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kipiski, Lech</creator><creatorcontrib>Kipiski, Lech</creatorcontrib><description>We present a new stopping criterion for the matching pursuit (MP) algorithm, based on evaluating stationarity of the residua of the consecutive MP iterations. The new stopping criterion is based on a model of a nonstationary signal, which assumes that the part of the signal that is of interest is nonstationary and contaminated by a weakly stationary noise. Mean- and variance-stationarity of the residua obtained from each step of MP is evaluated by means of dedicated statistical tests—the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test and the White test, respectively. We illustrate the proposed concept by an example in which we analyse magnetoencephalographic (MEG) data.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-011-0443-9</identifier><identifier>PMID: 22095172</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - physiology ; Brain Waves - physiology ; Complex Systems ; Computer Appl. in Life Sciences ; Contamination ; Criteria ; Cybernetics ; Electroencephalography ; Humans ; Illustrations ; Iterative methods ; Magnetoencephalography ; Matching ; Models, Neurological ; Neurobiology ; Neurosciences ; Noise ; Original Paper ; Signal Processing, Computer-Assisted</subject><ispartof>Biological cybernetics, 2011-12, Vol.105 (5-6), p.287-290</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-ee6548fe7847f519c4aa84489d7079f02de85908b29cfb30c4b8022e613870383</citedby><cites>FETCH-LOGICAL-c436t-ee6548fe7847f519c4aa84489d7079f02de85908b29cfb30c4b8022e613870383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00422-011-0443-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00422-011-0443-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22095172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kipiski, Lech</creatorcontrib><title>Stationarity stopping criterion for matching pursuit—framework and encephalographic illustration</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><addtitle>Biol Cybern</addtitle><description>We present a new stopping criterion for the matching pursuit (MP) algorithm, based on evaluating stationarity of the residua of the consecutive MP iterations. The new stopping criterion is based on a model of a nonstationary signal, which assumes that the part of the signal that is of interest is nonstationary and contaminated by a weakly stationary noise. Mean- and variance-stationarity of the residua obtained from each step of MP is evaluated by means of dedicated statistical tests—the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test and the White test, respectively. We illustrate the proposed concept by an example in which we analyse magnetoencephalographic (MEG) data.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - physiology</subject><subject>Brain Waves - physiology</subject><subject>Complex Systems</subject><subject>Computer Appl. in Life Sciences</subject><subject>Contamination</subject><subject>Criteria</subject><subject>Cybernetics</subject><subject>Electroencephalography</subject><subject>Humans</subject><subject>Illustrations</subject><subject>Iterative methods</subject><subject>Magnetoencephalography</subject><subject>Matching</subject><subject>Models, Neurological</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Noise</subject><subject>Original Paper</subject><subject>Signal Processing, Computer-Assisted</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkd2K1DAYhoOsuOPoBXgiZU_0pPrlp01yKIN_MOCBehzSTDqT2bapScoyZ16EV-iVmNrRBcFdCIS8eb43hAehZxheYQD-OgIwQkrAuATGaCkfoBVmNCecwwVaAWVQYgJwiR7HeAQASSr5CF0SArLCnKxQ8znp5Pygg0unIiY_jm7YFyYfbch50fpQ9DqZwxyPU4iTSz-__2iD7u2ND9eFHnaFHYwdD7rz-6DHgzOF67oppvC7-gl62Oou2qfnfY2-vnv7ZfOh3H56_3HzZlsaRutUWltXTLSWC8bbCkvDtBaMCbnjwGULZGdFJUE0RJq2oWBYI4AQW2MqOFBB1-jF0jsG_22yManeRWO7Tg_WT1FJAoRiktk1enkniWtRCciL348CljXlUFcZvfoHPfopDPnLSmLJK8ykzBBeIBN8jMG2agyu1-GUm9QsVS1SVZaqZqlqnnl-Lp6a3u7-TvyxmAGyADFfDXsbbl_-f-svqYqtUA</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Kipiski, Lech</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20111201</creationdate><title>Stationarity stopping criterion for matching pursuit—framework and encephalographic illustration</title><author>Kipiski, Lech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-ee6548fe7847f519c4aa84489d7079f02de85908b29cfb30c4b8022e613870383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - physiology</topic><topic>Brain Waves - physiology</topic><topic>Complex Systems</topic><topic>Computer Appl. in Life Sciences</topic><topic>Contamination</topic><topic>Criteria</topic><topic>Cybernetics</topic><topic>Electroencephalography</topic><topic>Humans</topic><topic>Illustrations</topic><topic>Iterative methods</topic><topic>Magnetoencephalography</topic><topic>Matching</topic><topic>Models, Neurological</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Noise</topic><topic>Original Paper</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kipiski, Lech</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kipiski, Lech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stationarity stopping criterion for matching pursuit—framework and encephalographic illustration</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><addtitle>Biol Cybern</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>105</volume><issue>5-6</issue><spage>287</spage><epage>290</epage><pages>287-290</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><abstract>We present a new stopping criterion for the matching pursuit (MP) algorithm, based on evaluating stationarity of the residua of the consecutive MP iterations. The new stopping criterion is based on a model of a nonstationary signal, which assumes that the part of the signal that is of interest is nonstationary and contaminated by a weakly stationary noise. Mean- and variance-stationarity of the residua obtained from each step of MP is evaluated by means of dedicated statistical tests—the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test and the White test, respectively. We illustrate the proposed concept by an example in which we analyse magnetoencephalographic (MEG) data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22095172</pmid><doi>10.1007/s00422-011-0443-9</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-1200 |
ispartof | Biological cybernetics, 2011-12, Vol.105 (5-6), p.287-290 |
issn | 0340-1200 1432-0770 |
language | eng |
recordid | cdi_proquest_miscellaneous_920231270 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Bioinformatics Biomedical and Life Sciences Biomedicine Brain - physiology Brain Waves - physiology Complex Systems Computer Appl. in Life Sciences Contamination Criteria Cybernetics Electroencephalography Humans Illustrations Iterative methods Magnetoencephalography Matching Models, Neurological Neurobiology Neurosciences Noise Original Paper Signal Processing, Computer-Assisted |
title | Stationarity stopping criterion for matching pursuit—framework and encephalographic illustration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stationarity%20stopping%20criterion%20for%20matching%20pursuit%E2%80%94framework%20and%20encephalographic%20illustration&rft.jtitle=Biological%20cybernetics&rft.au=Kipiski,%20Lech&rft.date=2011-12-01&rft.volume=105&rft.issue=5-6&rft.spage=287&rft.epage=290&rft.pages=287-290&rft.issn=0340-1200&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s00422-011-0443-9&rft_dat=%3Cproquest_cross%3E1019637065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919751499&rft_id=info:pmid/22095172&rfr_iscdi=true |