Stationarity stopping criterion for matching pursuit—framework and encephalographic illustration

We present a new stopping criterion for the matching pursuit (MP) algorithm, based on evaluating stationarity of the residua of the consecutive MP iterations. The new stopping criterion is based on a model of a nonstationary signal, which assumes that the part of the signal that is of interest is no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological cybernetics 2011-12, Vol.105 (5-6), p.287-290
1. Verfasser: Kipiski, Lech
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 5-6
container_start_page 287
container_title Biological cybernetics
container_volume 105
creator Kipiski, Lech
description We present a new stopping criterion for the matching pursuit (MP) algorithm, based on evaluating stationarity of the residua of the consecutive MP iterations. The new stopping criterion is based on a model of a nonstationary signal, which assumes that the part of the signal that is of interest is nonstationary and contaminated by a weakly stationary noise. Mean- and variance-stationarity of the residua obtained from each step of MP is evaluated by means of dedicated statistical tests—the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test and the White test, respectively. We illustrate the proposed concept by an example in which we analyse magnetoencephalographic (MEG) data.
doi_str_mv 10.1007/s00422-011-0443-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_920231270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1019637065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-ee6548fe7847f519c4aa84489d7079f02de85908b29cfb30c4b8022e613870383</originalsourceid><addsrcrecordid>eNqFkd2K1DAYhoOsuOPoBXgiZU_0pPrlp01yKIN_MOCBehzSTDqT2bapScoyZ16EV-iVmNrRBcFdCIS8eb43hAehZxheYQD-OgIwQkrAuATGaCkfoBVmNCecwwVaAWVQYgJwiR7HeAQASSr5CF0SArLCnKxQ8znp5Pygg0unIiY_jm7YFyYfbch50fpQ9DqZwxyPU4iTSz-__2iD7u2ND9eFHnaFHYwdD7rz-6DHgzOF67oppvC7-gl62Oou2qfnfY2-vnv7ZfOh3H56_3HzZlsaRutUWltXTLSWC8bbCkvDtBaMCbnjwGULZGdFJUE0RJq2oWBYI4AQW2MqOFBB1-jF0jsG_22yManeRWO7Tg_WT1FJAoRiktk1enkniWtRCciL348CljXlUFcZvfoHPfopDPnLSmLJK8ykzBBeIBN8jMG2agyu1-GUm9QsVS1SVZaqZqlqnnl-Lp6a3u7-TvyxmAGyADFfDXsbbl_-f-svqYqtUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919751499</pqid></control><display><type>article</type><title>Stationarity stopping criterion for matching pursuit—framework and encephalographic illustration</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kipiski, Lech</creator><creatorcontrib>Kipiski, Lech</creatorcontrib><description>We present a new stopping criterion for the matching pursuit (MP) algorithm, based on evaluating stationarity of the residua of the consecutive MP iterations. The new stopping criterion is based on a model of a nonstationary signal, which assumes that the part of the signal that is of interest is nonstationary and contaminated by a weakly stationary noise. Mean- and variance-stationarity of the residua obtained from each step of MP is evaluated by means of dedicated statistical tests—the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test and the White test, respectively. We illustrate the proposed concept by an example in which we analyse magnetoencephalographic (MEG) data.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-011-0443-9</identifier><identifier>PMID: 22095172</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Brain - physiology ; Brain Waves - physiology ; Complex Systems ; Computer Appl. in Life Sciences ; Contamination ; Criteria ; Cybernetics ; Electroencephalography ; Humans ; Illustrations ; Iterative methods ; Magnetoencephalography ; Matching ; Models, Neurological ; Neurobiology ; Neurosciences ; Noise ; Original Paper ; Signal Processing, Computer-Assisted</subject><ispartof>Biological cybernetics, 2011-12, Vol.105 (5-6), p.287-290</ispartof><rights>Springer-Verlag 2011</rights><rights>Springer-Verlag 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-ee6548fe7847f519c4aa84489d7079f02de85908b29cfb30c4b8022e613870383</citedby><cites>FETCH-LOGICAL-c436t-ee6548fe7847f519c4aa84489d7079f02de85908b29cfb30c4b8022e613870383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00422-011-0443-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00422-011-0443-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22095172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kipiski, Lech</creatorcontrib><title>Stationarity stopping criterion for matching pursuit—framework and encephalographic illustration</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><addtitle>Biol Cybern</addtitle><description>We present a new stopping criterion for the matching pursuit (MP) algorithm, based on evaluating stationarity of the residua of the consecutive MP iterations. The new stopping criterion is based on a model of a nonstationary signal, which assumes that the part of the signal that is of interest is nonstationary and contaminated by a weakly stationary noise. Mean- and variance-stationarity of the residua obtained from each step of MP is evaluated by means of dedicated statistical tests—the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test and the White test, respectively. We illustrate the proposed concept by an example in which we analyse magnetoencephalographic (MEG) data.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - physiology</subject><subject>Brain Waves - physiology</subject><subject>Complex Systems</subject><subject>Computer Appl. in Life Sciences</subject><subject>Contamination</subject><subject>Criteria</subject><subject>Cybernetics</subject><subject>Electroencephalography</subject><subject>Humans</subject><subject>Illustrations</subject><subject>Iterative methods</subject><subject>Magnetoencephalography</subject><subject>Matching</subject><subject>Models, Neurological</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Noise</subject><subject>Original Paper</subject><subject>Signal Processing, Computer-Assisted</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkd2K1DAYhoOsuOPoBXgiZU_0pPrlp01yKIN_MOCBehzSTDqT2bapScoyZ16EV-iVmNrRBcFdCIS8eb43hAehZxheYQD-OgIwQkrAuATGaCkfoBVmNCecwwVaAWVQYgJwiR7HeAQASSr5CF0SArLCnKxQ8znp5Pygg0unIiY_jm7YFyYfbch50fpQ9DqZwxyPU4iTSz-__2iD7u2ND9eFHnaFHYwdD7rz-6DHgzOF67oppvC7-gl62Oou2qfnfY2-vnv7ZfOh3H56_3HzZlsaRutUWltXTLSWC8bbCkvDtBaMCbnjwGULZGdFJUE0RJq2oWBYI4AQW2MqOFBB1-jF0jsG_22yManeRWO7Tg_WT1FJAoRiktk1enkniWtRCciL348CljXlUFcZvfoHPfopDPnLSmLJK8ykzBBeIBN8jMG2agyu1-GUm9QsVS1SVZaqZqlqnnl-Lp6a3u7-TvyxmAGyADFfDXsbbl_-f-svqYqtUA</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Kipiski, Lech</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20111201</creationdate><title>Stationarity stopping criterion for matching pursuit—framework and encephalographic illustration</title><author>Kipiski, Lech</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-ee6548fe7847f519c4aa84489d7079f02de85908b29cfb30c4b8022e613870383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - physiology</topic><topic>Brain Waves - physiology</topic><topic>Complex Systems</topic><topic>Computer Appl. in Life Sciences</topic><topic>Contamination</topic><topic>Criteria</topic><topic>Cybernetics</topic><topic>Electroencephalography</topic><topic>Humans</topic><topic>Illustrations</topic><topic>Iterative methods</topic><topic>Magnetoencephalography</topic><topic>Matching</topic><topic>Models, Neurological</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Noise</topic><topic>Original Paper</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kipiski, Lech</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kipiski, Lech</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stationarity stopping criterion for matching pursuit—framework and encephalographic illustration</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><addtitle>Biol Cybern</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>105</volume><issue>5-6</issue><spage>287</spage><epage>290</epage><pages>287-290</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><abstract>We present a new stopping criterion for the matching pursuit (MP) algorithm, based on evaluating stationarity of the residua of the consecutive MP iterations. The new stopping criterion is based on a model of a nonstationary signal, which assumes that the part of the signal that is of interest is nonstationary and contaminated by a weakly stationary noise. Mean- and variance-stationarity of the residua obtained from each step of MP is evaluated by means of dedicated statistical tests—the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test and the White test, respectively. We illustrate the proposed concept by an example in which we analyse magnetoencephalographic (MEG) data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22095172</pmid><doi>10.1007/s00422-011-0443-9</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0340-1200
ispartof Biological cybernetics, 2011-12, Vol.105 (5-6), p.287-290
issn 0340-1200
1432-0770
language eng
recordid cdi_proquest_miscellaneous_920231270
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Algorithms
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Brain - physiology
Brain Waves - physiology
Complex Systems
Computer Appl. in Life Sciences
Contamination
Criteria
Cybernetics
Electroencephalography
Humans
Illustrations
Iterative methods
Magnetoencephalography
Matching
Models, Neurological
Neurobiology
Neurosciences
Noise
Original Paper
Signal Processing, Computer-Assisted
title Stationarity stopping criterion for matching pursuit—framework and encephalographic illustration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stationarity%20stopping%20criterion%20for%20matching%20pursuit%E2%80%94framework%20and%20encephalographic%20illustration&rft.jtitle=Biological%20cybernetics&rft.au=Kipiski,%20Lech&rft.date=2011-12-01&rft.volume=105&rft.issue=5-6&rft.spage=287&rft.epage=290&rft.pages=287-290&rft.issn=0340-1200&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s00422-011-0443-9&rft_dat=%3Cproquest_cross%3E1019637065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919751499&rft_id=info:pmid/22095172&rfr_iscdi=true