LFTB: An Efficient Algorithm to Bound Linear Fractional Transformations
This work presents an efficient algorithm to solve a structured semidefinite program (SDP) with important applications in the analysis of uncertain linear systems. The solution to this particular SDP gives an upper bound for the maximum singular value of a multidimensional rational matrix function,...
Gespeichert in:
Veröffentlicht in: | Optimization and engineering 2005-06, Vol.6 (2), p.177-201 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 2 |
container_start_page | 177 |
container_title | Optimization and engineering |
container_volume | 6 |
creator | D’Amato, Fernando Rotea, Mario |
description | This work presents an efficient algorithm to solve a structured semidefinite program (SDP) with important applications in the analysis of uncertain linear systems. The solution to this particular SDP gives an upper bound for the maximum singular value of a multidimensional rational matrix function, or linear fractional transformation, over a box of n real parameters. The proposed algorithm is based on a known method for solving semidefinite programs. The key features of the algorithm are low memory requirements, low cost per iteration, and efficient adaptive rules to update algorithm parameters. Proper utilization of the structure of the semidefinite program under consideration leads to an algorithm that reduced the cost per iteration and memory requirements of existing general-purpose SDP solvers by a factor of O(n). Thus, the algorithm in this paper achieves substantial savings in computing resources for problems with a large number of parameters. Additional savings are obtained when the problem data includes block-circulant matrices as is the case in the analysis of uncertain mechanical structures with spatial symmetry.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s11081-005-6795-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919957832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425511921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-183a6cfd1da7afedd73f76c005d76e2ae42ffbd574a0e7b2142a1cb1da7fccec3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQQC0EEqXwA9gsFiaDv2I7bG3VFqRILGW2XMcGV0lc7GSgv55EZWK60-np9PQAuCf4iWAsnzMhWBGEcYGELAt0ugAzUkiGaEn55bgzVSLOKb4GNzkfMCaioGoGttVmt3yBiw6uvQ82uK6Hi-YzptB_tbCPcBmHroZV6JxJcJOM7UPsTAN3yXTZx9Sa6ZBvwZU3TXZ3f3MOPjbr3eoVVe_bt9WiQpYWokdEMSOsr0ltpPGuriXzUthRu5bCUeM49X5fF5Ib7OSeEk4NsfsJ99Y6y-bg8fz3mOL34HKv25CtaxrTuThkXZKyLKRidCQf_pGHOKRRPWulGKdKiAkiZ8immHNyXh9TaE360QTrKaw-h9WjoZ7C6hP7Bf3tbC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883428662</pqid></control><display><type>article</type><title>LFTB: An Efficient Algorithm to Bound Linear Fractional Transformations</title><source>SpringerLink Journals - AutoHoldings</source><creator>D’Amato, Fernando ; Rotea, Mario</creator><creatorcontrib>D’Amato, Fernando ; Rotea, Mario</creatorcontrib><description>This work presents an efficient algorithm to solve a structured semidefinite program (SDP) with important applications in the analysis of uncertain linear systems. The solution to this particular SDP gives an upper bound for the maximum singular value of a multidimensional rational matrix function, or linear fractional transformation, over a box of n real parameters. The proposed algorithm is based on a known method for solving semidefinite programs. The key features of the algorithm are low memory requirements, low cost per iteration, and efficient adaptive rules to update algorithm parameters. Proper utilization of the structure of the semidefinite program under consideration leads to an algorithm that reduced the cost per iteration and memory requirements of existing general-purpose SDP solvers by a factor of O(n). Thus, the algorithm in this paper achieves substantial savings in computing resources for problems with a large number of parameters. Additional savings are obtained when the problem data includes block-circulant matrices as is the case in the analysis of uncertain mechanical structures with spatial symmetry.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-005-6795-z</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algorithms ; Cost control ; Cost engineering ; Iterative methods ; Linear systems ; Mathematical analysis ; Mathematical models ; Matrices ; Studies ; Transformations</subject><ispartof>Optimization and engineering, 2005-06, Vol.6 (2), p.177-201</ispartof><rights>Springer Science + Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-183a6cfd1da7afedd73f76c005d76e2ae42ffbd574a0e7b2142a1cb1da7fccec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>D’Amato, Fernando</creatorcontrib><creatorcontrib>Rotea, Mario</creatorcontrib><title>LFTB: An Efficient Algorithm to Bound Linear Fractional Transformations</title><title>Optimization and engineering</title><description>This work presents an efficient algorithm to solve a structured semidefinite program (SDP) with important applications in the analysis of uncertain linear systems. The solution to this particular SDP gives an upper bound for the maximum singular value of a multidimensional rational matrix function, or linear fractional transformation, over a box of n real parameters. The proposed algorithm is based on a known method for solving semidefinite programs. The key features of the algorithm are low memory requirements, low cost per iteration, and efficient adaptive rules to update algorithm parameters. Proper utilization of the structure of the semidefinite program under consideration leads to an algorithm that reduced the cost per iteration and memory requirements of existing general-purpose SDP solvers by a factor of O(n). Thus, the algorithm in this paper achieves substantial savings in computing resources for problems with a large number of parameters. Additional savings are obtained when the problem data includes block-circulant matrices as is the case in the analysis of uncertain mechanical structures with spatial symmetry.[PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Cost control</subject><subject>Cost engineering</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrices</subject><subject>Studies</subject><subject>Transformations</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQQC0EEqXwA9gsFiaDv2I7bG3VFqRILGW2XMcGV0lc7GSgv55EZWK60-np9PQAuCf4iWAsnzMhWBGEcYGELAt0ugAzUkiGaEn55bgzVSLOKb4GNzkfMCaioGoGttVmt3yBiw6uvQ82uK6Hi-YzptB_tbCPcBmHroZV6JxJcJOM7UPsTAN3yXTZx9Sa6ZBvwZU3TXZ3f3MOPjbr3eoVVe_bt9WiQpYWokdEMSOsr0ltpPGuriXzUthRu5bCUeM49X5fF5Ib7OSeEk4NsfsJ99Y6y-bg8fz3mOL34HKv25CtaxrTuThkXZKyLKRidCQf_pGHOKRRPWulGKdKiAkiZ8immHNyXh9TaE360QTrKaw-h9WjoZ7C6hP7Bf3tbC8</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>D’Amato, Fernando</creator><creator>Rotea, Mario</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20050601</creationdate><title>LFTB: An Efficient Algorithm to Bound Linear Fractional Transformations</title><author>D’Amato, Fernando ; Rotea, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-183a6cfd1da7afedd73f76c005d76e2ae42ffbd574a0e7b2142a1cb1da7fccec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Cost control</topic><topic>Cost engineering</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrices</topic><topic>Studies</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Amato, Fernando</creatorcontrib><creatorcontrib>Rotea, Mario</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Amato, Fernando</au><au>Rotea, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LFTB: An Efficient Algorithm to Bound Linear Fractional Transformations</atitle><jtitle>Optimization and engineering</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>6</volume><issue>2</issue><spage>177</spage><epage>201</epage><pages>177-201</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>This work presents an efficient algorithm to solve a structured semidefinite program (SDP) with important applications in the analysis of uncertain linear systems. The solution to this particular SDP gives an upper bound for the maximum singular value of a multidimensional rational matrix function, or linear fractional transformation, over a box of n real parameters. The proposed algorithm is based on a known method for solving semidefinite programs. The key features of the algorithm are low memory requirements, low cost per iteration, and efficient adaptive rules to update algorithm parameters. Proper utilization of the structure of the semidefinite program under consideration leads to an algorithm that reduced the cost per iteration and memory requirements of existing general-purpose SDP solvers by a factor of O(n). Thus, the algorithm in this paper achieves substantial savings in computing resources for problems with a large number of parameters. Additional savings are obtained when the problem data includes block-circulant matrices as is the case in the analysis of uncertain mechanical structures with spatial symmetry.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11081-005-6795-z</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-4420 |
ispartof | Optimization and engineering, 2005-06, Vol.6 (2), p.177-201 |
issn | 1389-4420 1573-2924 |
language | eng |
recordid | cdi_proquest_miscellaneous_919957832 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Cost control Cost engineering Iterative methods Linear systems Mathematical analysis Mathematical models Matrices Studies Transformations |
title | LFTB: An Efficient Algorithm to Bound Linear Fractional Transformations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LFTB:%20An%20Efficient%20Algorithm%20to%20Bound%20Linear%20Fractional%20Transformations&rft.jtitle=Optimization%20and%20engineering&rft.au=D%E2%80%99Amato,%20Fernando&rft.date=2005-06-01&rft.volume=6&rft.issue=2&rft.spage=177&rft.epage=201&rft.pages=177-201&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-005-6795-z&rft_dat=%3Cproquest_cross%3E2425511921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883428662&rft_id=info:pmid/&rfr_iscdi=true |