LFTB: An Efficient Algorithm to Bound Linear Fractional Transformations

This work presents an efficient algorithm to solve a structured semidefinite program (SDP) with important applications in the analysis of uncertain linear systems. The solution to this particular SDP gives an upper bound for the maximum singular value of a multidimensional rational matrix function,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization and engineering 2005-06, Vol.6 (2), p.177-201
Hauptverfasser: D’Amato, Fernando, Rotea, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 2
container_start_page 177
container_title Optimization and engineering
container_volume 6
creator D’Amato, Fernando
Rotea, Mario
description This work presents an efficient algorithm to solve a structured semidefinite program (SDP) with important applications in the analysis of uncertain linear systems. The solution to this particular SDP gives an upper bound for the maximum singular value of a multidimensional rational matrix function, or linear fractional transformation, over a box of n real parameters. The proposed algorithm is based on a known method for solving semidefinite programs. The key features of the algorithm are low memory requirements, low cost per iteration, and efficient adaptive rules to update algorithm parameters. Proper utilization of the structure of the semidefinite program under consideration leads to an algorithm that reduced the cost per iteration and memory requirements of existing general-purpose SDP solvers by a factor of O(n). Thus, the algorithm in this paper achieves substantial savings in computing resources for problems with a large number of parameters. Additional savings are obtained when the problem data includes block-circulant matrices as is the case in the analysis of uncertain mechanical structures with spatial symmetry.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s11081-005-6795-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919957832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425511921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-183a6cfd1da7afedd73f76c005d76e2ae42ffbd574a0e7b2142a1cb1da7fccec3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQQC0EEqXwA9gsFiaDv2I7bG3VFqRILGW2XMcGV0lc7GSgv55EZWK60-np9PQAuCf4iWAsnzMhWBGEcYGELAt0ugAzUkiGaEn55bgzVSLOKb4GNzkfMCaioGoGttVmt3yBiw6uvQ82uK6Hi-YzptB_tbCPcBmHroZV6JxJcJOM7UPsTAN3yXTZx9Sa6ZBvwZU3TXZ3f3MOPjbr3eoVVe_bt9WiQpYWokdEMSOsr0ltpPGuriXzUthRu5bCUeM49X5fF5Ib7OSeEk4NsfsJ99Y6y-bg8fz3mOL34HKv25CtaxrTuThkXZKyLKRidCQf_pGHOKRRPWulGKdKiAkiZ8immHNyXh9TaE360QTrKaw-h9WjoZ7C6hP7Bf3tbC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883428662</pqid></control><display><type>article</type><title>LFTB: An Efficient Algorithm to Bound Linear Fractional Transformations</title><source>SpringerLink Journals - AutoHoldings</source><creator>D’Amato, Fernando ; Rotea, Mario</creator><creatorcontrib>D’Amato, Fernando ; Rotea, Mario</creatorcontrib><description>This work presents an efficient algorithm to solve a structured semidefinite program (SDP) with important applications in the analysis of uncertain linear systems. The solution to this particular SDP gives an upper bound for the maximum singular value of a multidimensional rational matrix function, or linear fractional transformation, over a box of n real parameters. The proposed algorithm is based on a known method for solving semidefinite programs. The key features of the algorithm are low memory requirements, low cost per iteration, and efficient adaptive rules to update algorithm parameters. Proper utilization of the structure of the semidefinite program under consideration leads to an algorithm that reduced the cost per iteration and memory requirements of existing general-purpose SDP solvers by a factor of O(n). Thus, the algorithm in this paper achieves substantial savings in computing resources for problems with a large number of parameters. Additional savings are obtained when the problem data includes block-circulant matrices as is the case in the analysis of uncertain mechanical structures with spatial symmetry.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-005-6795-z</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Algorithms ; Cost control ; Cost engineering ; Iterative methods ; Linear systems ; Mathematical analysis ; Mathematical models ; Matrices ; Studies ; Transformations</subject><ispartof>Optimization and engineering, 2005-06, Vol.6 (2), p.177-201</ispartof><rights>Springer Science + Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-183a6cfd1da7afedd73f76c005d76e2ae42ffbd574a0e7b2142a1cb1da7fccec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>D’Amato, Fernando</creatorcontrib><creatorcontrib>Rotea, Mario</creatorcontrib><title>LFTB: An Efficient Algorithm to Bound Linear Fractional Transformations</title><title>Optimization and engineering</title><description>This work presents an efficient algorithm to solve a structured semidefinite program (SDP) with important applications in the analysis of uncertain linear systems. The solution to this particular SDP gives an upper bound for the maximum singular value of a multidimensional rational matrix function, or linear fractional transformation, over a box of n real parameters. The proposed algorithm is based on a known method for solving semidefinite programs. The key features of the algorithm are low memory requirements, low cost per iteration, and efficient adaptive rules to update algorithm parameters. Proper utilization of the structure of the semidefinite program under consideration leads to an algorithm that reduced the cost per iteration and memory requirements of existing general-purpose SDP solvers by a factor of O(n). Thus, the algorithm in this paper achieves substantial savings in computing resources for problems with a large number of parameters. Additional savings are obtained when the problem data includes block-circulant matrices as is the case in the analysis of uncertain mechanical structures with spatial symmetry.[PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Cost control</subject><subject>Cost engineering</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Matrices</subject><subject>Studies</subject><subject>Transformations</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQQC0EEqXwA9gsFiaDv2I7bG3VFqRILGW2XMcGV0lc7GSgv55EZWK60-np9PQAuCf4iWAsnzMhWBGEcYGELAt0ugAzUkiGaEn55bgzVSLOKb4GNzkfMCaioGoGttVmt3yBiw6uvQ82uK6Hi-YzptB_tbCPcBmHroZV6JxJcJOM7UPsTAN3yXTZx9Sa6ZBvwZU3TXZ3f3MOPjbr3eoVVe_bt9WiQpYWokdEMSOsr0ltpPGuriXzUthRu5bCUeM49X5fF5Ib7OSeEk4NsfsJ99Y6y-bg8fz3mOL34HKv25CtaxrTuThkXZKyLKRidCQf_pGHOKRRPWulGKdKiAkiZ8immHNyXh9TaE360QTrKaw-h9WjoZ7C6hP7Bf3tbC8</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>D’Amato, Fernando</creator><creator>Rotea, Mario</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20050601</creationdate><title>LFTB: An Efficient Algorithm to Bound Linear Fractional Transformations</title><author>D’Amato, Fernando ; Rotea, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-183a6cfd1da7afedd73f76c005d76e2ae42ffbd574a0e7b2142a1cb1da7fccec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Cost control</topic><topic>Cost engineering</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Matrices</topic><topic>Studies</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D’Amato, Fernando</creatorcontrib><creatorcontrib>Rotea, Mario</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Amato, Fernando</au><au>Rotea, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LFTB: An Efficient Algorithm to Bound Linear Fractional Transformations</atitle><jtitle>Optimization and engineering</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>6</volume><issue>2</issue><spage>177</spage><epage>201</epage><pages>177-201</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>This work presents an efficient algorithm to solve a structured semidefinite program (SDP) with important applications in the analysis of uncertain linear systems. The solution to this particular SDP gives an upper bound for the maximum singular value of a multidimensional rational matrix function, or linear fractional transformation, over a box of n real parameters. The proposed algorithm is based on a known method for solving semidefinite programs. The key features of the algorithm are low memory requirements, low cost per iteration, and efficient adaptive rules to update algorithm parameters. Proper utilization of the structure of the semidefinite program under consideration leads to an algorithm that reduced the cost per iteration and memory requirements of existing general-purpose SDP solvers by a factor of O(n). Thus, the algorithm in this paper achieves substantial savings in computing resources for problems with a large number of parameters. Additional savings are obtained when the problem data includes block-circulant matrices as is the case in the analysis of uncertain mechanical structures with spatial symmetry.[PUBLICATION ABSTRACT]</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11081-005-6795-z</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1389-4420
ispartof Optimization and engineering, 2005-06, Vol.6 (2), p.177-201
issn 1389-4420
1573-2924
language eng
recordid cdi_proquest_miscellaneous_919957832
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Cost control
Cost engineering
Iterative methods
Linear systems
Mathematical analysis
Mathematical models
Matrices
Studies
Transformations
title LFTB: An Efficient Algorithm to Bound Linear Fractional Transformations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A43%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LFTB:%20An%20Efficient%20Algorithm%20to%20Bound%20Linear%20Fractional%20Transformations&rft.jtitle=Optimization%20and%20engineering&rft.au=D%E2%80%99Amato,%20Fernando&rft.date=2005-06-01&rft.volume=6&rft.issue=2&rft.spage=177&rft.epage=201&rft.pages=177-201&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-005-6795-z&rft_dat=%3Cproquest_cross%3E2425511921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883428662&rft_id=info:pmid/&rfr_iscdi=true