Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake

Delivery and toxicity are critical issues facing nanomedicine research. Currently, there is limited understanding and connection between the physicochemical properties of a nanomaterial and its interactions with a physiological system. As a result, it remains unclear how to optimally synthesize and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2012-02, Vol.134 (4), p.2139-2147
Hauptverfasser: Walkey, Carl D, Olsen, Jonathan B, Guo, Hongbo, Emili, Andrew, Chan, Warren C. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2147
container_issue 4
container_start_page 2139
container_title Journal of the American Chemical Society
container_volume 134
creator Walkey, Carl D
Olsen, Jonathan B
Guo, Hongbo
Emili, Andrew
Chan, Warren C. W
description Delivery and toxicity are critical issues facing nanomedicine research. Currently, there is limited understanding and connection between the physicochemical properties of a nanomaterial and its interactions with a physiological system. As a result, it remains unclear how to optimally synthesize and chemically modify nanomaterials for in vivo applications. It has been suggested that the physicochemical properties of a nanomaterial after synthesis, known as its “synthetic identity”, are not what a cell encounters in vivo. Adsorption of blood components and interactions with phagocytes can modify the size, aggregation state, and interfacial composition of a nanomaterial, giving it a distinct “biological identity”. Here, we investigate the role of size and surface chemistry in mediating serum protein adsorption to gold nanoparticles and their subsequent uptake by macrophages. Using label-free liquid chromatography tandem mass spectrometry, we find that over 70 different serum proteins are heterogeneously adsorbed to the surface of gold nanoparticles. The relative density of each of these adsorbed proteins depends on nanoparticle size and poly(ethylene glycol) grafting density. Variations in serum protein adsorption correlate with differences in the mechanism and efficiency of nanoparticle uptake by a macrophage cell line. Macrophages contribute to the poor efficiency of nanomaterial delivery into diseased tissues, redistribution of nanomaterials within the body, and potential toxicity. This study establishes principles for the rational design of clinically useful nanomaterials.
doi_str_mv 10.1021/ja2084338
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919956546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919956546</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-7882601595ea2072761001eee2757e0ca23498b51ad7a4844f10bbf2ae1f0a783</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EoqVw4A8gXxDiELAdO3GOVXlK5SGVnsMm2dCU5oHtHMqvx1DoidNqpW9GM0PIMWcXnAl-uQTBtAxDvUOGXAkWKC6iXTJkjIkg1lE4IAfWLv0rheb7ZCAET3gk1ZC8PkLTdmBcla-QzqpPpNAUdNabEnKkkwXWlXVmTa_QoamrxkNo-po-m9Zh1dBxYVvTuaptfoQPkJu2W8Ab0nnn4B0PyV4JK4tHv3dE5jfXL5O7YPp0ez8ZTwMINXM-pRYR4ypR6MvEIo44YxwRRaxiZDmIUCY6UxyKGKSWsuQsy0oByEsGsQ5H5Gzj25n2o0frUh88x9UKGmx7myY8SVSkZOTJ8w3pk1prsEw7U9Vg1iln6fee6XZPz578uvZZjcWW_BvQA6cbAHKbLtveNL7kP0Zf9dF7Dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919956546</pqid></control><display><type>article</type><title>Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Walkey, Carl D ; Olsen, Jonathan B ; Guo, Hongbo ; Emili, Andrew ; Chan, Warren C. W</creator><creatorcontrib>Walkey, Carl D ; Olsen, Jonathan B ; Guo, Hongbo ; Emili, Andrew ; Chan, Warren C. W</creatorcontrib><description>Delivery and toxicity are critical issues facing nanomedicine research. Currently, there is limited understanding and connection between the physicochemical properties of a nanomaterial and its interactions with a physiological system. As a result, it remains unclear how to optimally synthesize and chemically modify nanomaterials for in vivo applications. It has been suggested that the physicochemical properties of a nanomaterial after synthesis, known as its “synthetic identity”, are not what a cell encounters in vivo. Adsorption of blood components and interactions with phagocytes can modify the size, aggregation state, and interfacial composition of a nanomaterial, giving it a distinct “biological identity”. Here, we investigate the role of size and surface chemistry in mediating serum protein adsorption to gold nanoparticles and their subsequent uptake by macrophages. Using label-free liquid chromatography tandem mass spectrometry, we find that over 70 different serum proteins are heterogeneously adsorbed to the surface of gold nanoparticles. The relative density of each of these adsorbed proteins depends on nanoparticle size and poly(ethylene glycol) grafting density. Variations in serum protein adsorption correlate with differences in the mechanism and efficiency of nanoparticle uptake by a macrophage cell line. Macrophages contribute to the poor efficiency of nanomaterial delivery into diseased tissues, redistribution of nanomaterials within the body, and potential toxicity. This study establishes principles for the rational design of clinically useful nanomaterials.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja2084338</identifier><identifier>PMID: 22191645</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Blood Proteins - chemistry ; Gold - chemistry ; Gold - pharmacokinetics ; Humans ; Macrophages - chemistry ; Metal Nanoparticles - chemistry ; Particle Size ; Polyethylene Glycols - chemistry ; Surface Properties ; Tissue Distribution</subject><ispartof>Journal of the American Chemical Society, 2012-02, Vol.134 (4), p.2139-2147</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-7882601595ea2072761001eee2757e0ca23498b51ad7a4844f10bbf2ae1f0a783</citedby><cites>FETCH-LOGICAL-a380t-7882601595ea2072761001eee2757e0ca23498b51ad7a4844f10bbf2ae1f0a783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja2084338$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja2084338$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22191645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walkey, Carl D</creatorcontrib><creatorcontrib>Olsen, Jonathan B</creatorcontrib><creatorcontrib>Guo, Hongbo</creatorcontrib><creatorcontrib>Emili, Andrew</creatorcontrib><creatorcontrib>Chan, Warren C. W</creatorcontrib><title>Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Delivery and toxicity are critical issues facing nanomedicine research. Currently, there is limited understanding and connection between the physicochemical properties of a nanomaterial and its interactions with a physiological system. As a result, it remains unclear how to optimally synthesize and chemically modify nanomaterials for in vivo applications. It has been suggested that the physicochemical properties of a nanomaterial after synthesis, known as its “synthetic identity”, are not what a cell encounters in vivo. Adsorption of blood components and interactions with phagocytes can modify the size, aggregation state, and interfacial composition of a nanomaterial, giving it a distinct “biological identity”. Here, we investigate the role of size and surface chemistry in mediating serum protein adsorption to gold nanoparticles and their subsequent uptake by macrophages. Using label-free liquid chromatography tandem mass spectrometry, we find that over 70 different serum proteins are heterogeneously adsorbed to the surface of gold nanoparticles. The relative density of each of these adsorbed proteins depends on nanoparticle size and poly(ethylene glycol) grafting density. Variations in serum protein adsorption correlate with differences in the mechanism and efficiency of nanoparticle uptake by a macrophage cell line. Macrophages contribute to the poor efficiency of nanomaterial delivery into diseased tissues, redistribution of nanomaterials within the body, and potential toxicity. This study establishes principles for the rational design of clinically useful nanomaterials.</description><subject>Adsorption</subject><subject>Blood Proteins - chemistry</subject><subject>Gold - chemistry</subject><subject>Gold - pharmacokinetics</subject><subject>Humans</subject><subject>Macrophages - chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Surface Properties</subject><subject>Tissue Distribution</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEtPwzAQhC0EoqVw4A8gXxDiELAdO3GOVXlK5SGVnsMm2dCU5oHtHMqvx1DoidNqpW9GM0PIMWcXnAl-uQTBtAxDvUOGXAkWKC6iXTJkjIkg1lE4IAfWLv0rheb7ZCAET3gk1ZC8PkLTdmBcla-QzqpPpNAUdNabEnKkkwXWlXVmTa_QoamrxkNo-po-m9Zh1dBxYVvTuaptfoQPkJu2W8Ab0nnn4B0PyV4JK4tHv3dE5jfXL5O7YPp0ez8ZTwMINXM-pRYR4ypR6MvEIo44YxwRRaxiZDmIUCY6UxyKGKSWsuQsy0oByEsGsQ5H5Gzj25n2o0frUh88x9UKGmx7myY8SVSkZOTJ8w3pk1prsEw7U9Vg1iln6fee6XZPz578uvZZjcWW_BvQA6cbAHKbLtveNL7kP0Zf9dF7Dg</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Walkey, Carl D</creator><creator>Olsen, Jonathan B</creator><creator>Guo, Hongbo</creator><creator>Emili, Andrew</creator><creator>Chan, Warren C. W</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120201</creationdate><title>Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake</title><author>Walkey, Carl D ; Olsen, Jonathan B ; Guo, Hongbo ; Emili, Andrew ; Chan, Warren C. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-7882601595ea2072761001eee2757e0ca23498b51ad7a4844f10bbf2ae1f0a783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adsorption</topic><topic>Blood Proteins - chemistry</topic><topic>Gold - chemistry</topic><topic>Gold - pharmacokinetics</topic><topic>Humans</topic><topic>Macrophages - chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Surface Properties</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walkey, Carl D</creatorcontrib><creatorcontrib>Olsen, Jonathan B</creatorcontrib><creatorcontrib>Guo, Hongbo</creatorcontrib><creatorcontrib>Emili, Andrew</creatorcontrib><creatorcontrib>Chan, Warren C. W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walkey, Carl D</au><au>Olsen, Jonathan B</au><au>Guo, Hongbo</au><au>Emili, Andrew</au><au>Chan, Warren C. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2012-02-01</date><risdate>2012</risdate><volume>134</volume><issue>4</issue><spage>2139</spage><epage>2147</epage><pages>2139-2147</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Delivery and toxicity are critical issues facing nanomedicine research. Currently, there is limited understanding and connection between the physicochemical properties of a nanomaterial and its interactions with a physiological system. As a result, it remains unclear how to optimally synthesize and chemically modify nanomaterials for in vivo applications. It has been suggested that the physicochemical properties of a nanomaterial after synthesis, known as its “synthetic identity”, are not what a cell encounters in vivo. Adsorption of blood components and interactions with phagocytes can modify the size, aggregation state, and interfacial composition of a nanomaterial, giving it a distinct “biological identity”. Here, we investigate the role of size and surface chemistry in mediating serum protein adsorption to gold nanoparticles and their subsequent uptake by macrophages. Using label-free liquid chromatography tandem mass spectrometry, we find that over 70 different serum proteins are heterogeneously adsorbed to the surface of gold nanoparticles. The relative density of each of these adsorbed proteins depends on nanoparticle size and poly(ethylene glycol) grafting density. Variations in serum protein adsorption correlate with differences in the mechanism and efficiency of nanoparticle uptake by a macrophage cell line. Macrophages contribute to the poor efficiency of nanomaterial delivery into diseased tissues, redistribution of nanomaterials within the body, and potential toxicity. This study establishes principles for the rational design of clinically useful nanomaterials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22191645</pmid><doi>10.1021/ja2084338</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2012-02, Vol.134 (4), p.2139-2147
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_919956546
source MEDLINE; American Chemical Society Journals
subjects Adsorption
Blood Proteins - chemistry
Gold - chemistry
Gold - pharmacokinetics
Humans
Macrophages - chemistry
Metal Nanoparticles - chemistry
Particle Size
Polyethylene Glycols - chemistry
Surface Properties
Tissue Distribution
title Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A39%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle%20Size%20and%20Surface%20Chemistry%20Determine%20Serum%20Protein%20Adsorption%20and%20Macrophage%20Uptake&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Walkey,%20Carl%20D&rft.date=2012-02-01&rft.volume=134&rft.issue=4&rft.spage=2139&rft.epage=2147&rft.pages=2139-2147&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja2084338&rft_dat=%3Cproquest_cross%3E919956546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919956546&rft_id=info:pmid/22191645&rfr_iscdi=true