A Bending-Gradient model for thick plates, Part II: Closed-form solutions for cylindrical bending of laminates

In the first part ( Lebée and Sab, 2010a) of this two-part paper we have presented a new plate theory for out-of-plane loaded thick plates where the static unknowns are those of the Kirchhoff–Love theory (3 in-plane stresses and 3 bending moments), to which six components are added representing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2011-10, Vol.48 (20), p.2889-2901
Hauptverfasser: Lebée, A., Sab, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2901
container_issue 20
container_start_page 2889
container_title International journal of solids and structures
container_volume 48
creator Lebée, A.
Sab, K.
description In the first part ( Lebée and Sab, 2010a) of this two-part paper we have presented a new plate theory for out-of-plane loaded thick plates where the static unknowns are those of the Kirchhoff–Love theory (3 in-plane stresses and 3 bending moments), to which six components are added representing the gradient of the bending moment. The new theory, called Bending-Gradient plate theory is an extension to arbitrarily layered plates of the Reissner–Mindlin plate theory which appears as a special case when the plate is homogeneous. Moreover, we demonstrated that, in the general case, the Bending-Gradient model cannot be reduced to a Reissner–Mindlin model. In this paper, the Bending-Gradient theory is applied to laminated plates and its predictions are compared to those of Reissner–Mindlin theory and to full 3D ( Pagano, 1969) exact solutions. The main conclusion is that the Bending-Gradient gives good predictions of deflection, shear stress distributions and in-plane displacement distributions in any material configuration. Moreover, under some symmetry conditions, the Bending-Gradient model coincides with the second-order approximation of the exact solution as the slenderness ratio L/ h goes to infinity.
doi_str_mv 10.1016/j.ijsolstr.2011.06.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919952215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768311002150</els_id><sourcerecordid>919952215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-86e8c752833cb327d6de4a31f6799ba2815f467e1def67b78808cadcfc869b493</originalsourceid><addsrcrecordid>eNqFkEFvFCEYholpk25b_0LDpfHijMDMMNBT60brJk300J4JA98oKwMrsCb997Ju69UTCXne9833IHRFSUsJ5R-2rdvm6HNJLSOUtoS3hAxv0IqKUTaM9vwErQhhpBm56M7Qec5bQkjfSbJC4Q5_hGBd-N7cJ20dhIKXaMHjOSZcfjjzE--8LpDf4286FbzZ3OC1jxlsU4kF1-V9cTHkvwHz7F2wyRnt8XTsxXHGXi8uHEou0emsfYa3L-8Fevr86XH9pXn4er9Z3z00pmesNIKDMOPARNeZqWOj5RZ63dGZj1JOmgk6zD0fgVqoX9MoBBFGWzMbweXUy-4CvTv27lL8tYdc1OKyAe91gLjPSlIpB8boUEl-JE2KOSeY1S65RadnRYk6-FVb9epXHfwqwlX1W4PXLxM613PnpINx-V-a9X03jJxU7vbIQb33t4OksqmaDViXwBRlo_vf1B9_65Vo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919952215</pqid></control><display><type>article</type><title>A Bending-Gradient model for thick plates, Part II: Closed-form solutions for cylindrical bending of laminates</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lebée, A. ; Sab, K.</creator><creatorcontrib>Lebée, A. ; Sab, K.</creatorcontrib><description>In the first part ( Lebée and Sab, 2010a) of this two-part paper we have presented a new plate theory for out-of-plane loaded thick plates where the static unknowns are those of the Kirchhoff–Love theory (3 in-plane stresses and 3 bending moments), to which six components are added representing the gradient of the bending moment. The new theory, called Bending-Gradient plate theory is an extension to arbitrarily layered plates of the Reissner–Mindlin plate theory which appears as a special case when the plate is homogeneous. Moreover, we demonstrated that, in the general case, the Bending-Gradient model cannot be reduced to a Reissner–Mindlin model. In this paper, the Bending-Gradient theory is applied to laminated plates and its predictions are compared to those of Reissner–Mindlin theory and to full 3D ( Pagano, 1969) exact solutions. The main conclusion is that the Bending-Gradient gives good predictions of deflection, shear stress distributions and in-plane displacement distributions in any material configuration. Moreover, under some symmetry conditions, the Bending-Gradient model coincides with the second-order approximation of the exact solution as the slenderness ratio L/ h goes to infinity.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2011.06.005</identifier><identifier>CODEN: IJSOAD</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Bending moments ; Composite plates ; Exact sciences and technology ; Exact solutions ; Fundamental areas of phenomenology (including applications) ; Higher-order models ; Laminated plates ; Mathematical analysis ; Mathematical models ; Physics ; Plate theory ; Shear effects ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Stress concentration ; Structural and continuum mechanics ; Thick plates ; Three dimensional</subject><ispartof>International journal of solids and structures, 2011-10, Vol.48 (20), p.2889-2901</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-86e8c752833cb327d6de4a31f6799ba2815f467e1def67b78808cadcfc869b493</citedby><cites>FETCH-LOGICAL-c422t-86e8c752833cb327d6de4a31f6799ba2815f467e1def67b78808cadcfc869b493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020768311002150$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24435760$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lebée, A.</creatorcontrib><creatorcontrib>Sab, K.</creatorcontrib><title>A Bending-Gradient model for thick plates, Part II: Closed-form solutions for cylindrical bending of laminates</title><title>International journal of solids and structures</title><description>In the first part ( Lebée and Sab, 2010a) of this two-part paper we have presented a new plate theory for out-of-plane loaded thick plates where the static unknowns are those of the Kirchhoff–Love theory (3 in-plane stresses and 3 bending moments), to which six components are added representing the gradient of the bending moment. The new theory, called Bending-Gradient plate theory is an extension to arbitrarily layered plates of the Reissner–Mindlin plate theory which appears as a special case when the plate is homogeneous. Moreover, we demonstrated that, in the general case, the Bending-Gradient model cannot be reduced to a Reissner–Mindlin model. In this paper, the Bending-Gradient theory is applied to laminated plates and its predictions are compared to those of Reissner–Mindlin theory and to full 3D ( Pagano, 1969) exact solutions. The main conclusion is that the Bending-Gradient gives good predictions of deflection, shear stress distributions and in-plane displacement distributions in any material configuration. Moreover, under some symmetry conditions, the Bending-Gradient model coincides with the second-order approximation of the exact solution as the slenderness ratio L/ h goes to infinity.</description><subject>Bending moments</subject><subject>Composite plates</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Higher-order models</subject><subject>Laminated plates</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Plate theory</subject><subject>Shear effects</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress concentration</subject><subject>Structural and continuum mechanics</subject><subject>Thick plates</subject><subject>Three dimensional</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEFvFCEYholpk25b_0LDpfHijMDMMNBT60brJk300J4JA98oKwMrsCb997Ju69UTCXne9833IHRFSUsJ5R-2rdvm6HNJLSOUtoS3hAxv0IqKUTaM9vwErQhhpBm56M7Qec5bQkjfSbJC4Q5_hGBd-N7cJ20dhIKXaMHjOSZcfjjzE--8LpDf4286FbzZ3OC1jxlsU4kF1-V9cTHkvwHz7F2wyRnt8XTsxXHGXi8uHEou0emsfYa3L-8Fevr86XH9pXn4er9Z3z00pmesNIKDMOPARNeZqWOj5RZ63dGZj1JOmgk6zD0fgVqoX9MoBBFGWzMbweXUy-4CvTv27lL8tYdc1OKyAe91gLjPSlIpB8boUEl-JE2KOSeY1S65RadnRYk6-FVb9epXHfwqwlX1W4PXLxM613PnpINx-V-a9X03jJxU7vbIQb33t4OksqmaDViXwBRlo_vf1B9_65Vo</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Lebée, A.</creator><creator>Sab, K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20111001</creationdate><title>A Bending-Gradient model for thick plates, Part II: Closed-form solutions for cylindrical bending of laminates</title><author>Lebée, A. ; Sab, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-86e8c752833cb327d6de4a31f6799ba2815f467e1def67b78808cadcfc869b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bending moments</topic><topic>Composite plates</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Higher-order models</topic><topic>Laminated plates</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Plate theory</topic><topic>Shear effects</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress concentration</topic><topic>Structural and continuum mechanics</topic><topic>Thick plates</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lebée, A.</creatorcontrib><creatorcontrib>Sab, K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lebée, A.</au><au>Sab, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bending-Gradient model for thick plates, Part II: Closed-form solutions for cylindrical bending of laminates</atitle><jtitle>International journal of solids and structures</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>48</volume><issue>20</issue><spage>2889</spage><epage>2901</epage><pages>2889-2901</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><coden>IJSOAD</coden><abstract>In the first part ( Lebée and Sab, 2010a) of this two-part paper we have presented a new plate theory for out-of-plane loaded thick plates where the static unknowns are those of the Kirchhoff–Love theory (3 in-plane stresses and 3 bending moments), to which six components are added representing the gradient of the bending moment. The new theory, called Bending-Gradient plate theory is an extension to arbitrarily layered plates of the Reissner–Mindlin plate theory which appears as a special case when the plate is homogeneous. Moreover, we demonstrated that, in the general case, the Bending-Gradient model cannot be reduced to a Reissner–Mindlin model. In this paper, the Bending-Gradient theory is applied to laminated plates and its predictions are compared to those of Reissner–Mindlin theory and to full 3D ( Pagano, 1969) exact solutions. The main conclusion is that the Bending-Gradient gives good predictions of deflection, shear stress distributions and in-plane displacement distributions in any material configuration. Moreover, under some symmetry conditions, the Bending-Gradient model coincides with the second-order approximation of the exact solution as the slenderness ratio L/ h goes to infinity.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2011.06.005</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2011-10, Vol.48 (20), p.2889-2901
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_miscellaneous_919952215
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bending moments
Composite plates
Exact sciences and technology
Exact solutions
Fundamental areas of phenomenology (including applications)
Higher-order models
Laminated plates
Mathematical analysis
Mathematical models
Physics
Plate theory
Shear effects
Solid mechanics
Static elasticity (thermoelasticity...)
Stress concentration
Structural and continuum mechanics
Thick plates
Three dimensional
title A Bending-Gradient model for thick plates, Part II: Closed-form solutions for cylindrical bending of laminates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bending-Gradient%20model%20for%20thick%20plates,%20Part%20II:%20Closed-form%20solutions%20for%20cylindrical%20bending%20of%20laminates&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Leb%C3%A9e,%20A.&rft.date=2011-10-01&rft.volume=48&rft.issue=20&rft.spage=2889&rft.epage=2901&rft.pages=2889-2901&rft.issn=0020-7683&rft.eissn=1879-2146&rft.coden=IJSOAD&rft_id=info:doi/10.1016/j.ijsolstr.2011.06.005&rft_dat=%3Cproquest_cross%3E919952215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919952215&rft_id=info:pmid/&rft_els_id=S0020768311002150&rfr_iscdi=true