Prediction of Rock Fragmentation Due to Blasting in Sarcheshmeh Copper Mine Using Artificial Neural Networks

The main objective in production blasting is to achieve a proper fragmentation. In this paper, rock fragmentation the Sarcheshmeh copper mine has been predicted by developing a model using artificial neural network. To construct the model, parameters such as burden to spacing ratio, hole-diameter, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotechnical and geological engineering 2010-07, Vol.28 (4), p.423-430
Hauptverfasser: Monjezi, M., Amiri, H., Farrokhi, A., Goshtasbi, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 4
container_start_page 423
container_title Geotechnical and geological engineering
container_volume 28
creator Monjezi, M.
Amiri, H.
Farrokhi, A.
Goshtasbi, K.
description The main objective in production blasting is to achieve a proper fragmentation. In this paper, rock fragmentation the Sarcheshmeh copper mine has been predicted by developing a model using artificial neural network. To construct the model, parameters such as burden to spacing ratio, hole-diameter, stemming, total charge-per-delay and point load index have been considered as input parameters. A model with architecture 9-8-5-1 trained by back propagation method was found to be optimum. To compare performance of the neural network, statistical method was also applied. Determination coefficient ( R 2 ) and root mean square error were calculated for both the models, which show absolute superiority of neural network over traditional statistical method.
doi_str_mv 10.1007/s10706-010-9302-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919951594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259637176</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-eb2fe2caf3befcbd8c164dde4f0de2cd64c9025635b5ebd5513ce4f57b779ce83</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMoOD_-AN8CPvhUvUmbdnnU6VSYH6h7Dml6u0W7ZiYt4v56MycIgk8Xzv2dw-EQcsTglAEUZ4FBAXkCDBKZAk9WW2TARJEmTHC5TQYgc0hSNuS7ZC-EVwDgObABaR49VtZ01rXU1fTJmTc69nq2wLbT3-plj7Rz9KLRobPtjNqWPmtv5hjmC5zTkVsu0dM72yKdhjVw7jtbW2N1Q--x99-n-3D-LRyQnVo3AQ9_7j6Zjq9eRjfJ5OH6dnQ-SXRasC7BktfIja7TEmtTVkPD8qyqMKuhinqVZ0YCF3kqSoFlJQRLTXyKoiwKaXCY7pOTTe7Su_ceQ6cWNhhsGt2i64OSTErBhMwiefyHfHW9b2M5xbmQeexT5JFiG8p4F4LHWi29XWj_qRio9fxqM7-K86v1_GoVPXzjCZFtZ-h_k_83fQEbX4oW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259637176</pqid></control><display><type>article</type><title>Prediction of Rock Fragmentation Due to Blasting in Sarcheshmeh Copper Mine Using Artificial Neural Networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Monjezi, M. ; Amiri, H. ; Farrokhi, A. ; Goshtasbi, K.</creator><creatorcontrib>Monjezi, M. ; Amiri, H. ; Farrokhi, A. ; Goshtasbi, K.</creatorcontrib><description>The main objective in production blasting is to achieve a proper fragmentation. In this paper, rock fragmentation the Sarcheshmeh copper mine has been predicted by developing a model using artificial neural network. To construct the model, parameters such as burden to spacing ratio, hole-diameter, stemming, total charge-per-delay and point load index have been considered as input parameters. A model with architecture 9-8-5-1 trained by back propagation method was found to be optimum. To compare performance of the neural network, statistical method was also applied. Determination coefficient ( R 2 ) and root mean square error were calculated for both the models, which show absolute superiority of neural network over traditional statistical method.</description><identifier>ISSN: 0960-3182</identifier><identifier>EISSN: 1573-1529</identifier><identifier>DOI: 10.1007/s10706-010-9302-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial neural networks ; Back propagation ; BLASTING ; Civil Engineering ; COMPUTER SIMULATION ; Copper ; COPPER RESOURCES ; Earth and Environmental Science ; Earth Sciences ; Fragmentation ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; MATHEMATICAL ANALYSIS ; Mathematical models ; Neural networks ; Original Paper ; Parameters ; Predictions ; Rock ; Rocks ; Statistical analysis ; Statistical methods ; Statistics ; Terrestrial Pollution ; Waste Management/Waste Technology</subject><ispartof>Geotechnical and geological engineering, 2010-07, Vol.28 (4), p.423-430</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>Geotechnical and Geological Engineering is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-eb2fe2caf3befcbd8c164dde4f0de2cd64c9025635b5ebd5513ce4f57b779ce83</citedby><cites>FETCH-LOGICAL-a371t-eb2fe2caf3befcbd8c164dde4f0de2cd64c9025635b5ebd5513ce4f57b779ce83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10706-010-9302-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10706-010-9302-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Monjezi, M.</creatorcontrib><creatorcontrib>Amiri, H.</creatorcontrib><creatorcontrib>Farrokhi, A.</creatorcontrib><creatorcontrib>Goshtasbi, K.</creatorcontrib><title>Prediction of Rock Fragmentation Due to Blasting in Sarcheshmeh Copper Mine Using Artificial Neural Networks</title><title>Geotechnical and geological engineering</title><addtitle>Geotech Geol Eng</addtitle><description>The main objective in production blasting is to achieve a proper fragmentation. In this paper, rock fragmentation the Sarcheshmeh copper mine has been predicted by developing a model using artificial neural network. To construct the model, parameters such as burden to spacing ratio, hole-diameter, stemming, total charge-per-delay and point load index have been considered as input parameters. A model with architecture 9-8-5-1 trained by back propagation method was found to be optimum. To compare performance of the neural network, statistical method was also applied. Determination coefficient ( R 2 ) and root mean square error were calculated for both the models, which show absolute superiority of neural network over traditional statistical method.</description><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>BLASTING</subject><subject>Civil Engineering</subject><subject>COMPUTER SIMULATION</subject><subject>Copper</subject><subject>COPPER RESOURCES</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fragmentation</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>MATHEMATICAL ANALYSIS</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Predictions</subject><subject>Rock</subject><subject>Rocks</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Terrestrial Pollution</subject><subject>Waste Management/Waste Technology</subject><issn>0960-3182</issn><issn>1573-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kN1LwzAUxYMoOD_-AN8CPvhUvUmbdnnU6VSYH6h7Dml6u0W7ZiYt4v56MycIgk8Xzv2dw-EQcsTglAEUZ4FBAXkCDBKZAk9WW2TARJEmTHC5TQYgc0hSNuS7ZC-EVwDgObABaR49VtZ01rXU1fTJmTc69nq2wLbT3-plj7Rz9KLRobPtjNqWPmtv5hjmC5zTkVsu0dM72yKdhjVw7jtbW2N1Q--x99-n-3D-LRyQnVo3AQ9_7j6Zjq9eRjfJ5OH6dnQ-SXRasC7BktfIja7TEmtTVkPD8qyqMKuhinqVZ0YCF3kqSoFlJQRLTXyKoiwKaXCY7pOTTe7Su_ceQ6cWNhhsGt2i64OSTErBhMwiefyHfHW9b2M5xbmQeexT5JFiG8p4F4LHWi29XWj_qRio9fxqM7-K86v1_GoVPXzjCZFtZ-h_k_83fQEbX4oW</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Monjezi, M.</creator><creator>Amiri, H.</creator><creator>Farrokhi, A.</creator><creator>Goshtasbi, K.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20100701</creationdate><title>Prediction of Rock Fragmentation Due to Blasting in Sarcheshmeh Copper Mine Using Artificial Neural Networks</title><author>Monjezi, M. ; Amiri, H. ; Farrokhi, A. ; Goshtasbi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-eb2fe2caf3befcbd8c164dde4f0de2cd64c9025635b5ebd5513ce4f57b779ce83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>BLASTING</topic><topic>Civil Engineering</topic><topic>COMPUTER SIMULATION</topic><topic>Copper</topic><topic>COPPER RESOURCES</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fragmentation</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>MATHEMATICAL ANALYSIS</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Predictions</topic><topic>Rock</topic><topic>Rocks</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Terrestrial Pollution</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monjezi, M.</creatorcontrib><creatorcontrib>Amiri, H.</creatorcontrib><creatorcontrib>Farrokhi, A.</creatorcontrib><creatorcontrib>Goshtasbi, K.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Geotechnical and geological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monjezi, M.</au><au>Amiri, H.</au><au>Farrokhi, A.</au><au>Goshtasbi, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Rock Fragmentation Due to Blasting in Sarcheshmeh Copper Mine Using Artificial Neural Networks</atitle><jtitle>Geotechnical and geological engineering</jtitle><stitle>Geotech Geol Eng</stitle><date>2010-07-01</date><risdate>2010</risdate><volume>28</volume><issue>4</issue><spage>423</spage><epage>430</epage><pages>423-430</pages><issn>0960-3182</issn><eissn>1573-1529</eissn><abstract>The main objective in production blasting is to achieve a proper fragmentation. In this paper, rock fragmentation the Sarcheshmeh copper mine has been predicted by developing a model using artificial neural network. To construct the model, parameters such as burden to spacing ratio, hole-diameter, stemming, total charge-per-delay and point load index have been considered as input parameters. A model with architecture 9-8-5-1 trained by back propagation method was found to be optimum. To compare performance of the neural network, statistical method was also applied. Determination coefficient ( R 2 ) and root mean square error were calculated for both the models, which show absolute superiority of neural network over traditional statistical method.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10706-010-9302-z</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-3182
ispartof Geotechnical and geological engineering, 2010-07, Vol.28 (4), p.423-430
issn 0960-3182
1573-1529
language eng
recordid cdi_proquest_miscellaneous_919951594
source SpringerLink Journals - AutoHoldings
subjects Artificial neural networks
Back propagation
BLASTING
Civil Engineering
COMPUTER SIMULATION
Copper
COPPER RESOURCES
Earth and Environmental Science
Earth Sciences
Fragmentation
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
MATHEMATICAL ANALYSIS
Mathematical models
Neural networks
Original Paper
Parameters
Predictions
Rock
Rocks
Statistical analysis
Statistical methods
Statistics
Terrestrial Pollution
Waste Management/Waste Technology
title Prediction of Rock Fragmentation Due to Blasting in Sarcheshmeh Copper Mine Using Artificial Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A32%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Rock%20Fragmentation%20Due%20to%20Blasting%20in%20Sarcheshmeh%20Copper%20Mine%20Using%20Artificial%20Neural%20Networks&rft.jtitle=Geotechnical%20and%20geological%20engineering&rft.au=Monjezi,%20M.&rft.date=2010-07-01&rft.volume=28&rft.issue=4&rft.spage=423&rft.epage=430&rft.pages=423-430&rft.issn=0960-3182&rft.eissn=1573-1529&rft_id=info:doi/10.1007/s10706-010-9302-z&rft_dat=%3Cproquest_cross%3E2259637176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259637176&rft_id=info:pmid/&rfr_iscdi=true