Bundling influence on ultrafast optical nonlinearities of single-walled carbon nanotubes in suspension and composite film
Nonlinear optical characteristics of single-walled carbon nanotubes (SWCNTs) dispersed in dichlorobenzene and imbedded in polymer were investigated at 800 nm using the time-resolved optical Kerr gate technique. For systematic study of the influence of SWCNT bundling on optical nonlinearities, SWCNT...
Gespeichert in:
Veröffentlicht in: | Applied physics. B, Lasers and optics Lasers and optics, 2009-09, Vol.97 (1), p.157-162 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nonlinear optical characteristics of single-walled carbon nanotubes (SWCNTs) dispersed in dichlorobenzene and imbedded in polymer were investigated at 800 nm using the time-resolved optical Kerr gate technique. For systematic study of the influence of SWCNT bundling on optical nonlinearities, SWCNT solutions with different concentrations and a series of SWCNT/polymer composites deposited on glass substrates with different concentrations and thicknesses were prepared. The nonlinear response was comparable to the pulse duration of the laser used (∼90 fs) both in SWCNT solutions and SWCNT/polymer composites. Over three orders of magnitude enhancement was observed in the third-order nonlinear susceptibility of SWCNT/polymer composite film compared with that of SWCNT solution. An appreciable reduction of microscopic and macroscopic nonlinearities was observed with increasing SWCNT concentrations due to stronger bundling of SWCNTs. |
---|---|
ISSN: | 0946-2171 1432-0649 |
DOI: | 10.1007/s00340-009-3532-x |