Freezing transition of wetting film of tetradecane on tetradecyltrimethylammonium bromide solutions

We have performed ellipsometry and surface tensiometry at tetradecyltrimethylammonium bromide (TTAB) aqueous solution surface coexisting with tetradecane lens as a function of the molality of TTAB and the temperature under atmospheric pressure. From the theoretical analysis of the coefficient of ell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloid and polymer science 2010-08, Vol.288 (12-13), p.1333-1339
Hauptverfasser: Ohtomi, Eisuke, Takiue, Takanori, Aratono, Makoto, Matsubara, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1339
container_issue 12-13
container_start_page 1333
container_title Colloid and polymer science
container_volume 288
creator Ohtomi, Eisuke
Takiue, Takanori
Aratono, Makoto
Matsubara, Hiroki
description We have performed ellipsometry and surface tensiometry at tetradecyltrimethylammonium bromide (TTAB) aqueous solution surface coexisting with tetradecane lens as a function of the molality of TTAB and the temperature under atmospheric pressure. From the theoretical analysis of the coefficient of ellipticity, it was clarified that the liquid monolayer comprising the surfactant and alkane is formed at higher surfactant concentrations by the wetting transition of tetradecane lens on the aqueous solution, and the solid monolayer is formed by lowering temperature (freezing transition). The results of the surface tension measurement support the occurrence of wetting transition and the freezing transition. A phase diagram of the wetting film was constructed by ellipsometry and surface tensiometry, of which the mixed solid monolayer had never been reported before. From the thermodynamic analysis of the phase diagram, it is also demonstrated that the TTAB surface density decreases accompanied with the freezing transition, which agrees with surface densities of TTAB calculated from surface tension vs. concentration curves.
doi_str_mv 10.1007/s00396-010-2258-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919947758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919947758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-90422b63809ffa52183e428a595ff46780cc8f9b4cd5806b427a6037c1d6610b3</originalsourceid><addsrcrecordid>eNp9kE1rFjEUhYMo-Fr9Aa46INLV1JvPSZZS-gUFF1pwFzJ5k7cpM5OaZCjjr2-GqSJduAo39zmHcw9CHzGcYoDuSwagSrSAoSWEy3Z5hXaYUd5iTsVrtAMKtGVAfr5F73K-BwCmhNghe5Gc-x2mQ1OSmXIoIU5N9M2jK2X99WEY17m4ut87aybXVOLPuAwlhdGVu2Uw4xinMI9Nn-IY9q7JcZhXu_wevfFmyO7D83uEbi_Of5xdtTffLq_Pvt60lglZWgWMkF5QCcp7wwmW1DEiDVfceyY6CdZKr3pm91yC6BnpjADaWbwXAkNPj9DJ5vuQ4q_Z5aLHkK0bhho6zlkrrBTrOi4r-ekFeR_nNNVwGsuOcEUYU5XCG2VTzDk5rx_qsSYtGoNeW9db67q2rtfW9VI1n5-dTbZm8LVUG_JfIaH1LOC4cmTjcl1NB5f-SfAf8-NN5E3U5pCq8e13ApgClpJSqugT9tqcgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872592449</pqid></control><display><type>article</type><title>Freezing transition of wetting film of tetradecane on tetradecyltrimethylammonium bromide solutions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ohtomi, Eisuke ; Takiue, Takanori ; Aratono, Makoto ; Matsubara, Hiroki</creator><creatorcontrib>Ohtomi, Eisuke ; Takiue, Takanori ; Aratono, Makoto ; Matsubara, Hiroki</creatorcontrib><description>We have performed ellipsometry and surface tensiometry at tetradecyltrimethylammonium bromide (TTAB) aqueous solution surface coexisting with tetradecane lens as a function of the molality of TTAB and the temperature under atmospheric pressure. From the theoretical analysis of the coefficient of ellipticity, it was clarified that the liquid monolayer comprising the surfactant and alkane is formed at higher surfactant concentrations by the wetting transition of tetradecane lens on the aqueous solution, and the solid monolayer is formed by lowering temperature (freezing transition). The results of the surface tension measurement support the occurrence of wetting transition and the freezing transition. A phase diagram of the wetting film was constructed by ellipsometry and surface tensiometry, of which the mixed solid monolayer had never been reported before. From the thermodynamic analysis of the phase diagram, it is also demonstrated that the TTAB surface density decreases accompanied with the freezing transition, which agrees with surface densities of TTAB calculated from surface tension vs. concentration curves.</description><identifier>ISSN: 0303-402X</identifier><identifier>EISSN: 1435-1536</identifier><identifier>DOI: 10.1007/s00396-010-2258-y</identifier><identifier>CODEN: CPMSB6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Density ; Ellipsometry ; Exact sciences and technology ; Food Science ; Freezing ; General and physical chemistry ; Lenses ; Monolayers ; Nanotechnology and Microengineering ; Phase diagrams ; Physical Chemistry ; Polymer Sciences ; Short Communication ; Soft and Granular Matter ; Solid-liquid interface ; Surface freezing ; Surface physical chemistry ; Surfactant ; Tensiometry ; Tetradecane ; Wetting</subject><ispartof>Colloid and polymer science, 2010-08, Vol.288 (12-13), p.1333-1339</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><rights>Colloid and Polymer Science is a copyright of Springer, 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-90422b63809ffa52183e428a595ff46780cc8f9b4cd5806b427a6037c1d6610b3</citedby><cites>FETCH-LOGICAL-c468t-90422b63809ffa52183e428a595ff46780cc8f9b4cd5806b427a6037c1d6610b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00396-010-2258-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00396-010-2258-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23218051$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohtomi, Eisuke</creatorcontrib><creatorcontrib>Takiue, Takanori</creatorcontrib><creatorcontrib>Aratono, Makoto</creatorcontrib><creatorcontrib>Matsubara, Hiroki</creatorcontrib><title>Freezing transition of wetting film of tetradecane on tetradecyltrimethylammonium bromide solutions</title><title>Colloid and polymer science</title><addtitle>Colloid Polym Sci</addtitle><description>We have performed ellipsometry and surface tensiometry at tetradecyltrimethylammonium bromide (TTAB) aqueous solution surface coexisting with tetradecane lens as a function of the molality of TTAB and the temperature under atmospheric pressure. From the theoretical analysis of the coefficient of ellipticity, it was clarified that the liquid monolayer comprising the surfactant and alkane is formed at higher surfactant concentrations by the wetting transition of tetradecane lens on the aqueous solution, and the solid monolayer is formed by lowering temperature (freezing transition). The results of the surface tension measurement support the occurrence of wetting transition and the freezing transition. A phase diagram of the wetting film was constructed by ellipsometry and surface tensiometry, of which the mixed solid monolayer had never been reported before. From the thermodynamic analysis of the phase diagram, it is also demonstrated that the TTAB surface density decreases accompanied with the freezing transition, which agrees with surface densities of TTAB calculated from surface tension vs. concentration curves.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Density</subject><subject>Ellipsometry</subject><subject>Exact sciences and technology</subject><subject>Food Science</subject><subject>Freezing</subject><subject>General and physical chemistry</subject><subject>Lenses</subject><subject>Monolayers</subject><subject>Nanotechnology and Microengineering</subject><subject>Phase diagrams</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Short Communication</subject><subject>Soft and Granular Matter</subject><subject>Solid-liquid interface</subject><subject>Surface freezing</subject><subject>Surface physical chemistry</subject><subject>Surfactant</subject><subject>Tensiometry</subject><subject>Tetradecane</subject><subject>Wetting</subject><issn>0303-402X</issn><issn>1435-1536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1rFjEUhYMo-Fr9Aa46INLV1JvPSZZS-gUFF1pwFzJ5k7cpM5OaZCjjr2-GqSJduAo39zmHcw9CHzGcYoDuSwagSrSAoSWEy3Z5hXaYUd5iTsVrtAMKtGVAfr5F73K-BwCmhNghe5Gc-x2mQ1OSmXIoIU5N9M2jK2X99WEY17m4ut87aybXVOLPuAwlhdGVu2Uw4xinMI9Nn-IY9q7JcZhXu_wevfFmyO7D83uEbi_Of5xdtTffLq_Pvt60lglZWgWMkF5QCcp7wwmW1DEiDVfceyY6CdZKr3pm91yC6BnpjADaWbwXAkNPj9DJ5vuQ4q_Z5aLHkK0bhho6zlkrrBTrOi4r-ekFeR_nNNVwGsuOcEUYU5XCG2VTzDk5rx_qsSYtGoNeW9db67q2rtfW9VI1n5-dTbZm8LVUG_JfIaH1LOC4cmTjcl1NB5f-SfAf8-NN5E3U5pCq8e13ApgClpJSqugT9tqcgQ</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Ohtomi, Eisuke</creator><creator>Takiue, Takanori</creator><creator>Aratono, Makoto</creator><creator>Matsubara, Hiroki</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100801</creationdate><title>Freezing transition of wetting film of tetradecane on tetradecyltrimethylammonium bromide solutions</title><author>Ohtomi, Eisuke ; Takiue, Takanori ; Aratono, Makoto ; Matsubara, Hiroki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-90422b63809ffa52183e428a595ff46780cc8f9b4cd5806b427a6037c1d6610b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Density</topic><topic>Ellipsometry</topic><topic>Exact sciences and technology</topic><topic>Food Science</topic><topic>Freezing</topic><topic>General and physical chemistry</topic><topic>Lenses</topic><topic>Monolayers</topic><topic>Nanotechnology and Microengineering</topic><topic>Phase diagrams</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Short Communication</topic><topic>Soft and Granular Matter</topic><topic>Solid-liquid interface</topic><topic>Surface freezing</topic><topic>Surface physical chemistry</topic><topic>Surfactant</topic><topic>Tensiometry</topic><topic>Tetradecane</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohtomi, Eisuke</creatorcontrib><creatorcontrib>Takiue, Takanori</creatorcontrib><creatorcontrib>Aratono, Makoto</creatorcontrib><creatorcontrib>Matsubara, Hiroki</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Colloid and polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohtomi, Eisuke</au><au>Takiue, Takanori</au><au>Aratono, Makoto</au><au>Matsubara, Hiroki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Freezing transition of wetting film of tetradecane on tetradecyltrimethylammonium bromide solutions</atitle><jtitle>Colloid and polymer science</jtitle><stitle>Colloid Polym Sci</stitle><date>2010-08-01</date><risdate>2010</risdate><volume>288</volume><issue>12-13</issue><spage>1333</spage><epage>1339</epage><pages>1333-1339</pages><issn>0303-402X</issn><eissn>1435-1536</eissn><coden>CPMSB6</coden><abstract>We have performed ellipsometry and surface tensiometry at tetradecyltrimethylammonium bromide (TTAB) aqueous solution surface coexisting with tetradecane lens as a function of the molality of TTAB and the temperature under atmospheric pressure. From the theoretical analysis of the coefficient of ellipticity, it was clarified that the liquid monolayer comprising the surfactant and alkane is formed at higher surfactant concentrations by the wetting transition of tetradecane lens on the aqueous solution, and the solid monolayer is formed by lowering temperature (freezing transition). The results of the surface tension measurement support the occurrence of wetting transition and the freezing transition. A phase diagram of the wetting film was constructed by ellipsometry and surface tensiometry, of which the mixed solid monolayer had never been reported before. From the thermodynamic analysis of the phase diagram, it is also demonstrated that the TTAB surface density decreases accompanied with the freezing transition, which agrees with surface densities of TTAB calculated from surface tension vs. concentration curves.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><doi>10.1007/s00396-010-2258-y</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-402X
ispartof Colloid and polymer science, 2010-08, Vol.288 (12-13), p.1333-1339
issn 0303-402X
1435-1536
language eng
recordid cdi_proquest_miscellaneous_919947758
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Density
Ellipsometry
Exact sciences and technology
Food Science
Freezing
General and physical chemistry
Lenses
Monolayers
Nanotechnology and Microengineering
Phase diagrams
Physical Chemistry
Polymer Sciences
Short Communication
Soft and Granular Matter
Solid-liquid interface
Surface freezing
Surface physical chemistry
Surfactant
Tensiometry
Tetradecane
Wetting
title Freezing transition of wetting film of tetradecane on tetradecyltrimethylammonium bromide solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Freezing%20transition%20of%20wetting%20film%20of%20tetradecane%20on%20tetradecyltrimethylammonium%20bromide%20solutions&rft.jtitle=Colloid%20and%20polymer%20science&rft.au=Ohtomi,%20Eisuke&rft.date=2010-08-01&rft.volume=288&rft.issue=12-13&rft.spage=1333&rft.epage=1339&rft.pages=1333-1339&rft.issn=0303-402X&rft.eissn=1435-1536&rft.coden=CPMSB6&rft_id=info:doi/10.1007/s00396-010-2258-y&rft_dat=%3Cproquest_cross%3E919947758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1872592449&rft_id=info:pmid/&rfr_iscdi=true