Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering
The strong wave-front aberrations compensated by stimulated Brillouin scattering phase conjugate mirror (SBS-PCM) in a high power laser were investigated experimentally. The wave-front fluctuation of the 10 Hz 500 mJ Nd:YAG laser is 0.5 λ . Transmitting through a random phase plate (RPP), it increas...
Gespeichert in:
Veröffentlicht in: | Applied physics. B, Lasers and optics Lasers and optics, 2010-04, Vol.99 (1-2), p.257-261 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 261 |
---|---|
container_issue | 1-2 |
container_start_page | 257 |
container_title | Applied physics. B, Lasers and optics |
container_volume | 99 |
creator | Wang, Y. L. Lu, Z. W. Li, Y. Wu, P. Fan, X. M. Zheng, Z. X. He, W. M. |
description | The strong wave-front aberrations compensated by stimulated Brillouin scattering phase conjugate mirror (SBS-PCM) in a high power laser were investigated experimentally. The wave-front fluctuation of the 10 Hz 500 mJ Nd:YAG laser is 0.5
λ
. Transmitting through a random phase plate (RPP), it increases to 8.6
λ
. While using SBS-PCM in place of a high reflection mirror, the distortion induced by the RPP is compensated, and the wave-front fluctuation becomes 0.9
λ
. At the same time, obvious breakdown phenomena in the SBS cell were observed, and the reflectivity is unstable. A rotating wedge plate is introduced into the phase conjugating mirror to make the focus of the SBS cell rotate and optical breakdown is avoided effectively. The reflectivity becomes stable around about 70% and the instability is changed from ±4.1% to ±0.9%. Besides, the compensated wave-front fluctuation is only 0.6
λ
, which is near to the original wave-front distribution. The results show that the reflectivity of the SBS-PCM is very high and stable when there are no other nonlinear effects such as optical breakdown. Thus the compensating effects for strong wave-front errors are perfect. |
doi_str_mv | 10.1007/s00340-010-3933-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919945470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919945470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-e00290a2e0e66d7a41202ff39500ef3089c95c65e5bbebe967aed850c89deee53</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt_gLdcxNPqJNnsbo4qfhQEL3oOaTrbpmyTNdn14783tcWjw8DA480P3iPknMEVA6ivE4AooQAGhVBCFF8HZMJKwQuoSnVIJqDKquCsZsfkJKU15KmaZkJWM_-BaXBLM7jgad6VW65oHz4x0n5lElIbNj36tDe0NA0x-CU1c4zxV0z0w5ksu83YmQEX9Da6rguj8zRZMwwYnV-ekqPWdAnP9ndK3h7uX--eiueXx9ndzXNhhYShQACuwHAErKpFbUrGgbetUBIAWwGNskraSqKcz3GOqqoNLhoJtlELRJRiSi533D6G9zFH0xuXLHad8RjGpBVTqpRlDdnJdk4bQ0oRW91HtzHxWzPQ21L1rlSdS9XbUvVX_rnY002O1rXReOvS3yPnspYKtmy-86V-Gx6jXocx-hz8H_gP5xCKIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919945470</pqid></control><display><type>article</type><title>Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering</title><source>SpringerLink Journals</source><creator>Wang, Y. L. ; Lu, Z. W. ; Li, Y. ; Wu, P. ; Fan, X. M. ; Zheng, Z. X. ; He, W. M.</creator><creatorcontrib>Wang, Y. L. ; Lu, Z. W. ; Li, Y. ; Wu, P. ; Fan, X. M. ; Zheng, Z. X. ; He, W. M.</creatorcontrib><description>The strong wave-front aberrations compensated by stimulated Brillouin scattering phase conjugate mirror (SBS-PCM) in a high power laser were investigated experimentally. The wave-front fluctuation of the 10 Hz 500 mJ Nd:YAG laser is 0.5
λ
. Transmitting through a random phase plate (RPP), it increases to 8.6
λ
. While using SBS-PCM in place of a high reflection mirror, the distortion induced by the RPP is compensated, and the wave-front fluctuation becomes 0.9
λ
. At the same time, obvious breakdown phenomena in the SBS cell were observed, and the reflectivity is unstable. A rotating wedge plate is introduced into the phase conjugating mirror to make the focus of the SBS cell rotate and optical breakdown is avoided effectively. The reflectivity becomes stable around about 70% and the instability is changed from ±4.1% to ±0.9%. Besides, the compensated wave-front fluctuation is only 0.6
λ
, which is near to the original wave-front distribution. The results show that the reflectivity of the SBS-PCM is very high and stable when there are no other nonlinear effects such as optical breakdown. Thus the compensating effects for strong wave-front errors are perfect.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-010-3933-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Aberration ; Aberrations ; Breakdown ; Brillouin zone ; Compensation ; Doped-insulator lasers and other solid state lasers ; Engineering ; Exact sciences and technology ; Fluctuation ; Fundamental areas of phenomenology (including applications) ; Geometrical optics ; Lasers ; Nonlinear optics ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Optics ; Reflectivity ; Scattering ; Stimulated brillouin and rayleigh scattering</subject><ispartof>Applied physics. B, Lasers and optics, 2010-04, Vol.99 (1-2), p.257-261</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-e00290a2e0e66d7a41202ff39500ef3089c95c65e5bbebe967aed850c89deee53</citedby><cites>FETCH-LOGICAL-c350t-e00290a2e0e66d7a41202ff39500ef3089c95c65e5bbebe967aed850c89deee53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00340-010-3933-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00340-010-3933-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22575900$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Y. L.</creatorcontrib><creatorcontrib>Lu, Z. W.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Wu, P.</creatorcontrib><creatorcontrib>Fan, X. M.</creatorcontrib><creatorcontrib>Zheng, Z. X.</creatorcontrib><creatorcontrib>He, W. M.</creatorcontrib><title>Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><description>The strong wave-front aberrations compensated by stimulated Brillouin scattering phase conjugate mirror (SBS-PCM) in a high power laser were investigated experimentally. The wave-front fluctuation of the 10 Hz 500 mJ Nd:YAG laser is 0.5
λ
. Transmitting through a random phase plate (RPP), it increases to 8.6
λ
. While using SBS-PCM in place of a high reflection mirror, the distortion induced by the RPP is compensated, and the wave-front fluctuation becomes 0.9
λ
. At the same time, obvious breakdown phenomena in the SBS cell were observed, and the reflectivity is unstable. A rotating wedge plate is introduced into the phase conjugating mirror to make the focus of the SBS cell rotate and optical breakdown is avoided effectively. The reflectivity becomes stable around about 70% and the instability is changed from ±4.1% to ±0.9%. Besides, the compensated wave-front fluctuation is only 0.6
λ
, which is near to the original wave-front distribution. The results show that the reflectivity of the SBS-PCM is very high and stable when there are no other nonlinear effects such as optical breakdown. Thus the compensating effects for strong wave-front errors are perfect.</description><subject>Aberration</subject><subject>Aberrations</subject><subject>Breakdown</subject><subject>Brillouin zone</subject><subject>Compensation</subject><subject>Doped-insulator lasers and other solid state lasers</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Fluctuation</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geometrical optics</subject><subject>Lasers</subject><subject>Nonlinear optics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>Reflectivity</subject><subject>Scattering</subject><subject>Stimulated brillouin and rayleigh scattering</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKt_gLdcxNPqJNnsbo4qfhQEL3oOaTrbpmyTNdn14783tcWjw8DA480P3iPknMEVA6ivE4AooQAGhVBCFF8HZMJKwQuoSnVIJqDKquCsZsfkJKU15KmaZkJWM_-BaXBLM7jgad6VW65oHz4x0n5lElIbNj36tDe0NA0x-CU1c4zxV0z0w5ksu83YmQEX9Da6rguj8zRZMwwYnV-ekqPWdAnP9ndK3h7uX--eiueXx9ndzXNhhYShQACuwHAErKpFbUrGgbetUBIAWwGNskraSqKcz3GOqqoNLhoJtlELRJRiSi533D6G9zFH0xuXLHad8RjGpBVTqpRlDdnJdk4bQ0oRW91HtzHxWzPQ21L1rlSdS9XbUvVX_rnY002O1rXReOvS3yPnspYKtmy-86V-Gx6jXocx-hz8H_gP5xCKIw</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Wang, Y. L.</creator><creator>Lu, Z. W.</creator><creator>Li, Y.</creator><creator>Wu, P.</creator><creator>Fan, X. M.</creator><creator>Zheng, Z. X.</creator><creator>He, W. M.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100401</creationdate><title>Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering</title><author>Wang, Y. L. ; Lu, Z. W. ; Li, Y. ; Wu, P. ; Fan, X. M. ; Zheng, Z. X. ; He, W. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-e00290a2e0e66d7a41202ff39500ef3089c95c65e5bbebe967aed850c89deee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aberration</topic><topic>Aberrations</topic><topic>Breakdown</topic><topic>Brillouin zone</topic><topic>Compensation</topic><topic>Doped-insulator lasers and other solid state lasers</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Fluctuation</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geometrical optics</topic><topic>Lasers</topic><topic>Nonlinear optics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>Reflectivity</topic><topic>Scattering</topic><topic>Stimulated brillouin and rayleigh scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Y. L.</creatorcontrib><creatorcontrib>Lu, Z. W.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Wu, P.</creatorcontrib><creatorcontrib>Fan, X. M.</creatorcontrib><creatorcontrib>Zheng, Z. X.</creatorcontrib><creatorcontrib>He, W. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Y. L.</au><au>Lu, Z. W.</au><au>Li, Y.</au><au>Wu, P.</au><au>Fan, X. M.</au><au>Zheng, Z. X.</au><au>He, W. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>99</volume><issue>1-2</issue><spage>257</spage><epage>261</epage><pages>257-261</pages><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>The strong wave-front aberrations compensated by stimulated Brillouin scattering phase conjugate mirror (SBS-PCM) in a high power laser were investigated experimentally. The wave-front fluctuation of the 10 Hz 500 mJ Nd:YAG laser is 0.5
λ
. Transmitting through a random phase plate (RPP), it increases to 8.6
λ
. While using SBS-PCM in place of a high reflection mirror, the distortion induced by the RPP is compensated, and the wave-front fluctuation becomes 0.9
λ
. At the same time, obvious breakdown phenomena in the SBS cell were observed, and the reflectivity is unstable. A rotating wedge plate is introduced into the phase conjugating mirror to make the focus of the SBS cell rotate and optical breakdown is avoided effectively. The reflectivity becomes stable around about 70% and the instability is changed from ±4.1% to ±0.9%. Besides, the compensated wave-front fluctuation is only 0.6
λ
, which is near to the original wave-front distribution. The results show that the reflectivity of the SBS-PCM is very high and stable when there are no other nonlinear effects such as optical breakdown. Thus the compensating effects for strong wave-front errors are perfect.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00340-010-3933-x</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-2171 |
ispartof | Applied physics. B, Lasers and optics, 2010-04, Vol.99 (1-2), p.257-261 |
issn | 0946-2171 1432-0649 |
language | eng |
recordid | cdi_proquest_miscellaneous_919945470 |
source | SpringerLink Journals |
subjects | Aberration Aberrations Breakdown Brillouin zone Compensation Doped-insulator lasers and other solid state lasers Engineering Exact sciences and technology Fluctuation Fundamental areas of phenomenology (including applications) Geometrical optics Lasers Nonlinear optics Optical Devices Optics Photonics Physical Chemistry Physics Physics and Astronomy Quantum Optics Reflectivity Scattering Stimulated brillouin and rayleigh scattering |
title | Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20high%20power%20phase%20compensation%20of%20strong%20aberrations%20via%20stimulated%20Brillouin%20scattering&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=Wang,%20Y.%20L.&rft.date=2010-04-01&rft.volume=99&rft.issue=1-2&rft.spage=257&rft.epage=261&rft.pages=257-261&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-010-3933-x&rft_dat=%3Cproquest_cross%3E919945470%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919945470&rft_id=info:pmid/&rfr_iscdi=true |