Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering

The strong wave-front aberrations compensated by stimulated Brillouin scattering phase conjugate mirror (SBS-PCM) in a high power laser were investigated experimentally. The wave-front fluctuation of the 10 Hz 500 mJ Nd:YAG laser is 0.5 λ . Transmitting through a random phase plate (RPP), it increas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. B, Lasers and optics Lasers and optics, 2010-04, Vol.99 (1-2), p.257-261
Hauptverfasser: Wang, Y. L., Lu, Z. W., Li, Y., Wu, P., Fan, X. M., Zheng, Z. X., He, W. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue 1-2
container_start_page 257
container_title Applied physics. B, Lasers and optics
container_volume 99
creator Wang, Y. L.
Lu, Z. W.
Li, Y.
Wu, P.
Fan, X. M.
Zheng, Z. X.
He, W. M.
description The strong wave-front aberrations compensated by stimulated Brillouin scattering phase conjugate mirror (SBS-PCM) in a high power laser were investigated experimentally. The wave-front fluctuation of the 10 Hz 500 mJ Nd:YAG laser is 0.5 λ . Transmitting through a random phase plate (RPP), it increases to 8.6 λ . While using SBS-PCM in place of a high reflection mirror, the distortion induced by the RPP is compensated, and the wave-front fluctuation becomes 0.9 λ . At the same time, obvious breakdown phenomena in the SBS cell were observed, and the reflectivity is unstable. A rotating wedge plate is introduced into the phase conjugating mirror to make the focus of the SBS cell rotate and optical breakdown is avoided effectively. The reflectivity becomes stable around about 70% and the instability is changed from ±4.1% to ±0.9%. Besides, the compensated wave-front fluctuation is only 0.6 λ , which is near to the original wave-front distribution. The results show that the reflectivity of the SBS-PCM is very high and stable when there are no other nonlinear effects such as optical breakdown. Thus the compensating effects for strong wave-front errors are perfect.
doi_str_mv 10.1007/s00340-010-3933-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919945470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919945470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-e00290a2e0e66d7a41202ff39500ef3089c95c65e5bbebe967aed850c89deee53</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt_gLdcxNPqJNnsbo4qfhQEL3oOaTrbpmyTNdn14783tcWjw8DA480P3iPknMEVA6ivE4AooQAGhVBCFF8HZMJKwQuoSnVIJqDKquCsZsfkJKU15KmaZkJWM_-BaXBLM7jgad6VW65oHz4x0n5lElIbNj36tDe0NA0x-CU1c4zxV0z0w5ksu83YmQEX9Da6rguj8zRZMwwYnV-ekqPWdAnP9ndK3h7uX--eiueXx9ndzXNhhYShQACuwHAErKpFbUrGgbetUBIAWwGNskraSqKcz3GOqqoNLhoJtlELRJRiSi533D6G9zFH0xuXLHad8RjGpBVTqpRlDdnJdk4bQ0oRW91HtzHxWzPQ21L1rlSdS9XbUvVX_rnY002O1rXReOvS3yPnspYKtmy-86V-Gx6jXocx-hz8H_gP5xCKIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919945470</pqid></control><display><type>article</type><title>Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering</title><source>SpringerLink Journals</source><creator>Wang, Y. L. ; Lu, Z. W. ; Li, Y. ; Wu, P. ; Fan, X. M. ; Zheng, Z. X. ; He, W. M.</creator><creatorcontrib>Wang, Y. L. ; Lu, Z. W. ; Li, Y. ; Wu, P. ; Fan, X. M. ; Zheng, Z. X. ; He, W. M.</creatorcontrib><description>The strong wave-front aberrations compensated by stimulated Brillouin scattering phase conjugate mirror (SBS-PCM) in a high power laser were investigated experimentally. The wave-front fluctuation of the 10 Hz 500 mJ Nd:YAG laser is 0.5 λ . Transmitting through a random phase plate (RPP), it increases to 8.6 λ . While using SBS-PCM in place of a high reflection mirror, the distortion induced by the RPP is compensated, and the wave-front fluctuation becomes 0.9 λ . At the same time, obvious breakdown phenomena in the SBS cell were observed, and the reflectivity is unstable. A rotating wedge plate is introduced into the phase conjugating mirror to make the focus of the SBS cell rotate and optical breakdown is avoided effectively. The reflectivity becomes stable around about 70% and the instability is changed from ±4.1% to ±0.9%. Besides, the compensated wave-front fluctuation is only 0.6 λ , which is near to the original wave-front distribution. The results show that the reflectivity of the SBS-PCM is very high and stable when there are no other nonlinear effects such as optical breakdown. Thus the compensating effects for strong wave-front errors are perfect.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-010-3933-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Aberration ; Aberrations ; Breakdown ; Brillouin zone ; Compensation ; Doped-insulator lasers and other solid state lasers ; Engineering ; Exact sciences and technology ; Fluctuation ; Fundamental areas of phenomenology (including applications) ; Geometrical optics ; Lasers ; Nonlinear optics ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Optics ; Reflectivity ; Scattering ; Stimulated brillouin and rayleigh scattering</subject><ispartof>Applied physics. B, Lasers and optics, 2010-04, Vol.99 (1-2), p.257-261</ispartof><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-e00290a2e0e66d7a41202ff39500ef3089c95c65e5bbebe967aed850c89deee53</citedby><cites>FETCH-LOGICAL-c350t-e00290a2e0e66d7a41202ff39500ef3089c95c65e5bbebe967aed850c89deee53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00340-010-3933-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00340-010-3933-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22575900$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Y. L.</creatorcontrib><creatorcontrib>Lu, Z. W.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Wu, P.</creatorcontrib><creatorcontrib>Fan, X. M.</creatorcontrib><creatorcontrib>Zheng, Z. X.</creatorcontrib><creatorcontrib>He, W. M.</creatorcontrib><title>Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><description>The strong wave-front aberrations compensated by stimulated Brillouin scattering phase conjugate mirror (SBS-PCM) in a high power laser were investigated experimentally. The wave-front fluctuation of the 10 Hz 500 mJ Nd:YAG laser is 0.5 λ . Transmitting through a random phase plate (RPP), it increases to 8.6 λ . While using SBS-PCM in place of a high reflection mirror, the distortion induced by the RPP is compensated, and the wave-front fluctuation becomes 0.9 λ . At the same time, obvious breakdown phenomena in the SBS cell were observed, and the reflectivity is unstable. A rotating wedge plate is introduced into the phase conjugating mirror to make the focus of the SBS cell rotate and optical breakdown is avoided effectively. The reflectivity becomes stable around about 70% and the instability is changed from ±4.1% to ±0.9%. Besides, the compensated wave-front fluctuation is only 0.6 λ , which is near to the original wave-front distribution. The results show that the reflectivity of the SBS-PCM is very high and stable when there are no other nonlinear effects such as optical breakdown. Thus the compensating effects for strong wave-front errors are perfect.</description><subject>Aberration</subject><subject>Aberrations</subject><subject>Breakdown</subject><subject>Brillouin zone</subject><subject>Compensation</subject><subject>Doped-insulator lasers and other solid state lasers</subject><subject>Engineering</subject><subject>Exact sciences and technology</subject><subject>Fluctuation</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geometrical optics</subject><subject>Lasers</subject><subject>Nonlinear optics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>Reflectivity</subject><subject>Scattering</subject><subject>Stimulated brillouin and rayleigh scattering</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKt_gLdcxNPqJNnsbo4qfhQEL3oOaTrbpmyTNdn14783tcWjw8DA480P3iPknMEVA6ivE4AooQAGhVBCFF8HZMJKwQuoSnVIJqDKquCsZsfkJKU15KmaZkJWM_-BaXBLM7jgad6VW65oHz4x0n5lElIbNj36tDe0NA0x-CU1c4zxV0z0w5ksu83YmQEX9Da6rguj8zRZMwwYnV-ekqPWdAnP9ndK3h7uX--eiueXx9ndzXNhhYShQACuwHAErKpFbUrGgbetUBIAWwGNskraSqKcz3GOqqoNLhoJtlELRJRiSi533D6G9zFH0xuXLHad8RjGpBVTqpRlDdnJdk4bQ0oRW91HtzHxWzPQ21L1rlSdS9XbUvVX_rnY002O1rXReOvS3yPnspYKtmy-86V-Gx6jXocx-hz8H_gP5xCKIw</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Wang, Y. L.</creator><creator>Lu, Z. W.</creator><creator>Li, Y.</creator><creator>Wu, P.</creator><creator>Fan, X. M.</creator><creator>Zheng, Z. X.</creator><creator>He, W. M.</creator><general>Springer-Verlag</general><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20100401</creationdate><title>Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering</title><author>Wang, Y. L. ; Lu, Z. W. ; Li, Y. ; Wu, P. ; Fan, X. M. ; Zheng, Z. X. ; He, W. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-e00290a2e0e66d7a41202ff39500ef3089c95c65e5bbebe967aed850c89deee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aberration</topic><topic>Aberrations</topic><topic>Breakdown</topic><topic>Brillouin zone</topic><topic>Compensation</topic><topic>Doped-insulator lasers and other solid state lasers</topic><topic>Engineering</topic><topic>Exact sciences and technology</topic><topic>Fluctuation</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geometrical optics</topic><topic>Lasers</topic><topic>Nonlinear optics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>Reflectivity</topic><topic>Scattering</topic><topic>Stimulated brillouin and rayleigh scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Y. L.</creatorcontrib><creatorcontrib>Lu, Z. W.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Wu, P.</creatorcontrib><creatorcontrib>Fan, X. M.</creatorcontrib><creatorcontrib>Zheng, Z. X.</creatorcontrib><creatorcontrib>He, W. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Y. L.</au><au>Lu, Z. W.</au><au>Li, Y.</au><au>Wu, P.</au><au>Fan, X. M.</au><au>Zheng, Z. X.</au><au>He, W. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>99</volume><issue>1-2</issue><spage>257</spage><epage>261</epage><pages>257-261</pages><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>The strong wave-front aberrations compensated by stimulated Brillouin scattering phase conjugate mirror (SBS-PCM) in a high power laser were investigated experimentally. The wave-front fluctuation of the 10 Hz 500 mJ Nd:YAG laser is 0.5 λ . Transmitting through a random phase plate (RPP), it increases to 8.6 λ . While using SBS-PCM in place of a high reflection mirror, the distortion induced by the RPP is compensated, and the wave-front fluctuation becomes 0.9 λ . At the same time, obvious breakdown phenomena in the SBS cell were observed, and the reflectivity is unstable. A rotating wedge plate is introduced into the phase conjugating mirror to make the focus of the SBS cell rotate and optical breakdown is avoided effectively. The reflectivity becomes stable around about 70% and the instability is changed from ±4.1% to ±0.9%. Besides, the compensated wave-front fluctuation is only 0.6 λ , which is near to the original wave-front distribution. The results show that the reflectivity of the SBS-PCM is very high and stable when there are no other nonlinear effects such as optical breakdown. Thus the compensating effects for strong wave-front errors are perfect.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00340-010-3933-x</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0946-2171
ispartof Applied physics. B, Lasers and optics, 2010-04, Vol.99 (1-2), p.257-261
issn 0946-2171
1432-0649
language eng
recordid cdi_proquest_miscellaneous_919945470
source SpringerLink Journals
subjects Aberration
Aberrations
Breakdown
Brillouin zone
Compensation
Doped-insulator lasers and other solid state lasers
Engineering
Exact sciences and technology
Fluctuation
Fundamental areas of phenomenology (including applications)
Geometrical optics
Lasers
Nonlinear optics
Optical Devices
Optics
Photonics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Optics
Reflectivity
Scattering
Stimulated brillouin and rayleigh scattering
title Investigation on high power phase compensation of strong aberrations via stimulated Brillouin scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A47%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20high%20power%20phase%20compensation%20of%20strong%20aberrations%20via%20stimulated%20Brillouin%20scattering&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=Wang,%20Y.%20L.&rft.date=2010-04-01&rft.volume=99&rft.issue=1-2&rft.spage=257&rft.epage=261&rft.pages=257-261&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-010-3933-x&rft_dat=%3Cproquest_cross%3E919945470%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919945470&rft_id=info:pmid/&rfr_iscdi=true