What Factors Control Product Yield in Charge Separation Reaction from Second Excited State in Zinc–Porphyrin Derivatives?

Intramolecular charge separation from the second singlet excited state of directly linked Zn–porphyrin–imide dyads and following charge recombination into the first singlet excited state has been investigated in the framework of a model involving three electronic states (the first and the second sin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2012-02, Vol.116 (4), p.1159-1167
Hauptverfasser: Rogozina, Marina V, Ionkin, Vladimir N, Ivanov, Anatoly I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1167
container_issue 4
container_start_page 1159
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 116
creator Rogozina, Marina V
Ionkin, Vladimir N
Ivanov, Anatoly I
description Intramolecular charge separation from the second singlet excited state of directly linked Zn–porphyrin–imide dyads and following charge recombination into the first singlet excited state has been investigated in the framework of a model involving three electronic states (the first and the second singlet excited and charge separated states) as well as their vibrational sublevels. Kinetics of the transitions between these states are described in terms of the stochastic point-transition approach. The influence of the model parameters (free energy change of charge separation, magnitude of the reorganization energies of the medium and the high frequency intramolecular vibrations, the rate of relaxation of the medium and the intramolecular high frequency vibrational mode) on the kinetics of population of both the charge separated and the first singlet excited states has been explored. Simulations of the kinetics of the charge separated state population have allowed reproducing the distinctive features of the kinetics observed in the experiment [ Wallin S. ; Monnereau C. ; Blart E. ; Gankou J.-R. ; Odobel F. ; Hammarström L. J. Phys. Chem. A 2010, 114, 1709 ]: (i) two maxima on short time scale (hundreds of femtoseconds) and long time scale (tens of picoseconds), (ii) the magnitudes of both maxima, and (iii) the depth of the notch between the maxima.
doi_str_mv 10.1021/jp210988k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919943630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753504567</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-e1291fcbc286a80337a1ee94b25988dd8f8167b3a7aeb719bea83920d81041893</originalsourceid><addsrcrecordid>eNp9kctO3TAQhi1UxK0seAHkTQUs0nrsXOxVVR2uElJRKUKwiRxn0pPTnDjYDgKx6Tv0Dfsk-OgAq4rV_Jr55pdmfkJ2gH0GxuHLbODAlJS_V8gGZJwlGYfsQ9RMqiTLhVonm97PGGMgeLpG1jnnkAouNsjT9VQHeqxNsM7Tie2Dsx29cLYeTaA3LXY1bXs6mWr3C-klDtrp0Nqe_sC4sxCNs_M4MLav6dGDaQPW9DLogIu927Y3__78vbBumD662DhE195Hh3v0Xz-S1UZ3Hrdf6ha5Oj76OTlNzr-fnE2-nSc6BRESBK6gMZXhMteSCVFoQFRpxbN4c13LRkJeVEIXGqsCVIVaCsVZLYGlIJXYIntL38HZuxF9KOetN9h1ukc7-lKBUqnIBYvk_rskFJnIWJrlRUQPlqhx1nuHTTm4dq7dYwmsXKRSvqUS2d0X27GaY_1GvsYQgU9LQBtfzuzo-viP_xg9A5HflI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753504567</pqid></control><display><type>article</type><title>What Factors Control Product Yield in Charge Separation Reaction from Second Excited State in Zinc–Porphyrin Derivatives?</title><source>MEDLINE</source><source>ACS Publications</source><creator>Rogozina, Marina V ; Ionkin, Vladimir N ; Ivanov, Anatoly I</creator><creatorcontrib>Rogozina, Marina V ; Ionkin, Vladimir N ; Ivanov, Anatoly I</creatorcontrib><description>Intramolecular charge separation from the second singlet excited state of directly linked Zn–porphyrin–imide dyads and following charge recombination into the first singlet excited state has been investigated in the framework of a model involving three electronic states (the first and the second singlet excited and charge separated states) as well as their vibrational sublevels. Kinetics of the transitions between these states are described in terms of the stochastic point-transition approach. The influence of the model parameters (free energy change of charge separation, magnitude of the reorganization energies of the medium and the high frequency intramolecular vibrations, the rate of relaxation of the medium and the intramolecular high frequency vibrational mode) on the kinetics of population of both the charge separated and the first singlet excited states has been explored. Simulations of the kinetics of the charge separated state population have allowed reproducing the distinctive features of the kinetics observed in the experiment [ Wallin S. ; Monnereau C. ; Blart E. ; Gankou J.-R. ; Odobel F. ; Hammarström L. J. Phys. Chem. A 2010, 114, 1709 ]: (i) two maxima on short time scale (hundreds of femtoseconds) and long time scale (tens of picoseconds), (ii) the magnitudes of both maxima, and (iii) the depth of the notch between the maxima.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp210988k</identifier><identifier>PMID: 22214323</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Charge ; Excitation ; High frequencies ; Kinetics ; Mathematical models ; Maxima ; Metalloporphyrins - chemistry ; Quantum Theory ; Separation ; Time ; Vibration ; Zinc - chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2012-02, Vol.116 (4), p.1159-1167</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-e1291fcbc286a80337a1ee94b25988dd8f8167b3a7aeb719bea83920d81041893</citedby><cites>FETCH-LOGICAL-a413t-e1291fcbc286a80337a1ee94b25988dd8f8167b3a7aeb719bea83920d81041893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp210988k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp210988k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22214323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rogozina, Marina V</creatorcontrib><creatorcontrib>Ionkin, Vladimir N</creatorcontrib><creatorcontrib>Ivanov, Anatoly I</creatorcontrib><title>What Factors Control Product Yield in Charge Separation Reaction from Second Excited State in Zinc–Porphyrin Derivatives?</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Intramolecular charge separation from the second singlet excited state of directly linked Zn–porphyrin–imide dyads and following charge recombination into the first singlet excited state has been investigated in the framework of a model involving three electronic states (the first and the second singlet excited and charge separated states) as well as their vibrational sublevels. Kinetics of the transitions between these states are described in terms of the stochastic point-transition approach. The influence of the model parameters (free energy change of charge separation, magnitude of the reorganization energies of the medium and the high frequency intramolecular vibrations, the rate of relaxation of the medium and the intramolecular high frequency vibrational mode) on the kinetics of population of both the charge separated and the first singlet excited states has been explored. Simulations of the kinetics of the charge separated state population have allowed reproducing the distinctive features of the kinetics observed in the experiment [ Wallin S. ; Monnereau C. ; Blart E. ; Gankou J.-R. ; Odobel F. ; Hammarström L. J. Phys. Chem. A 2010, 114, 1709 ]: (i) two maxima on short time scale (hundreds of femtoseconds) and long time scale (tens of picoseconds), (ii) the magnitudes of both maxima, and (iii) the depth of the notch between the maxima.</description><subject>Charge</subject><subject>Excitation</subject><subject>High frequencies</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Maxima</subject><subject>Metalloporphyrins - chemistry</subject><subject>Quantum Theory</subject><subject>Separation</subject><subject>Time</subject><subject>Vibration</subject><subject>Zinc - chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctO3TAQhi1UxK0seAHkTQUs0nrsXOxVVR2uElJRKUKwiRxn0pPTnDjYDgKx6Tv0Dfsk-OgAq4rV_Jr55pdmfkJ2gH0GxuHLbODAlJS_V8gGZJwlGYfsQ9RMqiTLhVonm97PGGMgeLpG1jnnkAouNsjT9VQHeqxNsM7Tie2Dsx29cLYeTaA3LXY1bXs6mWr3C-klDtrp0Nqe_sC4sxCNs_M4MLav6dGDaQPW9DLogIu927Y3__78vbBumD662DhE195Hh3v0Xz-S1UZ3Hrdf6ha5Oj76OTlNzr-fnE2-nSc6BRESBK6gMZXhMteSCVFoQFRpxbN4c13LRkJeVEIXGqsCVIVaCsVZLYGlIJXYIntL38HZuxF9KOetN9h1ukc7-lKBUqnIBYvk_rskFJnIWJrlRUQPlqhx1nuHTTm4dq7dYwmsXKRSvqUS2d0X27GaY_1GvsYQgU9LQBtfzuzo-viP_xg9A5HflI0</recordid><startdate>20120202</startdate><enddate>20120202</enddate><creator>Rogozina, Marina V</creator><creator>Ionkin, Vladimir N</creator><creator>Ivanov, Anatoly I</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20120202</creationdate><title>What Factors Control Product Yield in Charge Separation Reaction from Second Excited State in Zinc–Porphyrin Derivatives?</title><author>Rogozina, Marina V ; Ionkin, Vladimir N ; Ivanov, Anatoly I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-e1291fcbc286a80337a1ee94b25988dd8f8167b3a7aeb719bea83920d81041893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Charge</topic><topic>Excitation</topic><topic>High frequencies</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Maxima</topic><topic>Metalloporphyrins - chemistry</topic><topic>Quantum Theory</topic><topic>Separation</topic><topic>Time</topic><topic>Vibration</topic><topic>Zinc - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rogozina, Marina V</creatorcontrib><creatorcontrib>Ionkin, Vladimir N</creatorcontrib><creatorcontrib>Ivanov, Anatoly I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rogozina, Marina V</au><au>Ionkin, Vladimir N</au><au>Ivanov, Anatoly I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What Factors Control Product Yield in Charge Separation Reaction from Second Excited State in Zinc–Porphyrin Derivatives?</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2012-02-02</date><risdate>2012</risdate><volume>116</volume><issue>4</issue><spage>1159</spage><epage>1167</epage><pages>1159-1167</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Intramolecular charge separation from the second singlet excited state of directly linked Zn–porphyrin–imide dyads and following charge recombination into the first singlet excited state has been investigated in the framework of a model involving three electronic states (the first and the second singlet excited and charge separated states) as well as their vibrational sublevels. Kinetics of the transitions between these states are described in terms of the stochastic point-transition approach. The influence of the model parameters (free energy change of charge separation, magnitude of the reorganization energies of the medium and the high frequency intramolecular vibrations, the rate of relaxation of the medium and the intramolecular high frequency vibrational mode) on the kinetics of population of both the charge separated and the first singlet excited states has been explored. Simulations of the kinetics of the charge separated state population have allowed reproducing the distinctive features of the kinetics observed in the experiment [ Wallin S. ; Monnereau C. ; Blart E. ; Gankou J.-R. ; Odobel F. ; Hammarström L. J. Phys. Chem. A 2010, 114, 1709 ]: (i) two maxima on short time scale (hundreds of femtoseconds) and long time scale (tens of picoseconds), (ii) the magnitudes of both maxima, and (iii) the depth of the notch between the maxima.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22214323</pmid><doi>10.1021/jp210988k</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2012-02, Vol.116 (4), p.1159-1167
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_919943630
source MEDLINE; ACS Publications
subjects Charge
Excitation
High frequencies
Kinetics
Mathematical models
Maxima
Metalloporphyrins - chemistry
Quantum Theory
Separation
Time
Vibration
Zinc - chemistry
title What Factors Control Product Yield in Charge Separation Reaction from Second Excited State in Zinc–Porphyrin Derivatives?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20Factors%20Control%20Product%20Yield%20in%20Charge%20Separation%20Reaction%20from%20Second%20Excited%20State%20in%20Zinc%E2%80%93Porphyrin%20Derivatives?&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Rogozina,%20Marina%20V&rft.date=2012-02-02&rft.volume=116&rft.issue=4&rft.spage=1159&rft.epage=1167&rft.pages=1159-1167&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp210988k&rft_dat=%3Cproquest_cross%3E1753504567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753504567&rft_id=info:pmid/22214323&rfr_iscdi=true