Computational Color Constancy: Survey and Experiments

Computational color constancy is a fundamental prerequisite for many computer vision applications. This paper presents a survey of many recent developments and state-of-the-art methods. Several criteria are proposed that are used to assess the approaches. A taxonomy of existing algorithms is propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2011-09, Vol.20 (9), p.2475-2489
Hauptverfasser: Gijsenij, A., Gevers, T., van de Weijer, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2489
container_issue 9
container_start_page 2475
container_title IEEE transactions on image processing
container_volume 20
creator Gijsenij, A.
Gevers, T.
van de Weijer, J.
description Computational color constancy is a fundamental prerequisite for many computer vision applications. This paper presents a survey of many recent developments and state-of-the-art methods. Several criteria are proposed that are used to assess the approaches. A taxonomy of existing algorithms is proposed and methods are separated in three groups: static methods, gamut-based methods, and learning-based methods. Further, the experimental setup is discussed including an overview of publicly available datasets. Finally, various freely available methods, of which some are considered to be state of the art, are evaluated on two datasets.
doi_str_mv 10.1109/TIP.2011.2118224
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_919943258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5719167</ieee_id><sourcerecordid>885056593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-97e2abb8a0a53eb3ae184d05fb2b26a3888d611f9b4fc6f86ace134ba9e54feb3</originalsourceid><addsrcrecordid>eNqFkNFLwzAQh4MoTqfvgiBDEJ86c-klTXyTMXUwUHA-l7S7QkfXzqQV99-bsTnBF19ygft-x93H2AXwIQA3d7PJ61BwgKEA0ELgATsBgxBxjuIw_LlMogTQ9Nip9wvOASWoY9YTEKPQiCdMjprlqmttWza1rQajpmpceGvf2jpf3w_eOvdJ64Gt54Px14pcuaS69WfsqLCVp_Nd7bP3x_Fs9BxNX54mo4dplKPENjIJCZtl2nIrY8piS6BxzmWRiUwoG2ut5wqgMBkWuSq0sjmFzTJrSGIRAn12u527cs1HR75Nl6XPqapsTU3nUwPGYCyk_pfUWnKppIkDef2HXDSdC8dvIFQJJsYEiG-h3DXeOyrSVTjdunUKPN2oT4P6dKM-3akPkavd3C5b0nwf-HEdgJsdYH1uq8IFw6X_5RAToYwM3OWWK4lo35YJGFBJ_A39OJNh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884674799</pqid></control><display><type>article</type><title>Computational Color Constancy: Survey and Experiments</title><source>IEEE Electronic Library (IEL)</source><creator>Gijsenij, A. ; Gevers, T. ; van de Weijer, J.</creator><creatorcontrib>Gijsenij, A. ; Gevers, T. ; van de Weijer, J.</creatorcontrib><description>Computational color constancy is a fundamental prerequisite for many computer vision applications. This paper presents a survey of many recent developments and state-of-the-art methods. Several criteria are proposed that are used to assess the approaches. A taxonomy of existing algorithms is proposed and methods are separated in three groups: static methods, gamut-based methods, and learning-based methods. Further, the experimental setup is discussed including an overview of publicly available datasets. Finally, various freely available methods, of which some are considered to be state of the art, are evaluated on two datasets.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2011.2118224</identifier><identifier>PMID: 21342844</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptation model ; Algorithms ; Applied sciences ; Artificial intelligence ; Color ; Color constancy ; Computation ; Computational modeling ; Computer science; control theory; systems ; Computer vision ; Criteria ; Estimation ; Exact sciences and technology ; Humans ; illuminant estimation ; Image color analysis ; Image processing ; Information, signal and communications theory ; Light sources ; Pattern recognition. Digital image processing. Computational geometry ; performance evaluation ; Pixel ; Signal processing ; State of the art ; survey ; Taxonomy ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2011-09, Vol.20 (9), p.2475-2489</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-97e2abb8a0a53eb3ae184d05fb2b26a3888d611f9b4fc6f86ace134ba9e54feb3</citedby><cites>FETCH-LOGICAL-c454t-97e2abb8a0a53eb3ae184d05fb2b26a3888d611f9b4fc6f86ace134ba9e54feb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5719167$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5719167$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24472695$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21342844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gijsenij, A.</creatorcontrib><creatorcontrib>Gevers, T.</creatorcontrib><creatorcontrib>van de Weijer, J.</creatorcontrib><title>Computational Color Constancy: Survey and Experiments</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Computational color constancy is a fundamental prerequisite for many computer vision applications. This paper presents a survey of many recent developments and state-of-the-art methods. Several criteria are proposed that are used to assess the approaches. A taxonomy of existing algorithms is proposed and methods are separated in three groups: static methods, gamut-based methods, and learning-based methods. Further, the experimental setup is discussed including an overview of publicly available datasets. Finally, various freely available methods, of which some are considered to be state of the art, are evaluated on two datasets.</description><subject>Adaptation model</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Color</subject><subject>Color constancy</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Criteria</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Humans</subject><subject>illuminant estimation</subject><subject>Image color analysis</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Light sources</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>performance evaluation</subject><subject>Pixel</subject><subject>Signal processing</subject><subject>State of the art</subject><subject>survey</subject><subject>Taxonomy</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkNFLwzAQh4MoTqfvgiBDEJ86c-klTXyTMXUwUHA-l7S7QkfXzqQV99-bsTnBF19ygft-x93H2AXwIQA3d7PJ61BwgKEA0ELgATsBgxBxjuIw_LlMogTQ9Nip9wvOASWoY9YTEKPQiCdMjprlqmttWza1rQajpmpceGvf2jpf3w_eOvdJ64Gt54Px14pcuaS69WfsqLCVp_Nd7bP3x_Fs9BxNX54mo4dplKPENjIJCZtl2nIrY8piS6BxzmWRiUwoG2ut5wqgMBkWuSq0sjmFzTJrSGIRAn12u527cs1HR75Nl6XPqapsTU3nUwPGYCyk_pfUWnKppIkDef2HXDSdC8dvIFQJJsYEiG-h3DXeOyrSVTjdunUKPN2oT4P6dKM-3akPkavd3C5b0nwf-HEdgJsdYH1uq8IFw6X_5RAToYwM3OWWK4lo35YJGFBJ_A39OJNh</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Gijsenij, A.</creator><creator>Gevers, T.</creator><creator>van de Weijer, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110901</creationdate><title>Computational Color Constancy: Survey and Experiments</title><author>Gijsenij, A. ; Gevers, T. ; van de Weijer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-97e2abb8a0a53eb3ae184d05fb2b26a3888d611f9b4fc6f86ace134ba9e54feb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation model</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Color</topic><topic>Color constancy</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Criteria</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Humans</topic><topic>illuminant estimation</topic><topic>Image color analysis</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Light sources</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>performance evaluation</topic><topic>Pixel</topic><topic>Signal processing</topic><topic>State of the art</topic><topic>survey</topic><topic>Taxonomy</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gijsenij, A.</creatorcontrib><creatorcontrib>Gevers, T.</creatorcontrib><creatorcontrib>van de Weijer, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gijsenij, A.</au><au>Gevers, T.</au><au>van de Weijer, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Color Constancy: Survey and Experiments</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>20</volume><issue>9</issue><spage>2475</spage><epage>2489</epage><pages>2475-2489</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Computational color constancy is a fundamental prerequisite for many computer vision applications. This paper presents a survey of many recent developments and state-of-the-art methods. Several criteria are proposed that are used to assess the approaches. A taxonomy of existing algorithms is proposed and methods are separated in three groups: static methods, gamut-based methods, and learning-based methods. Further, the experimental setup is discussed including an overview of publicly available datasets. Finally, various freely available methods, of which some are considered to be state of the art, are evaluated on two datasets.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>21342844</pmid><doi>10.1109/TIP.2011.2118224</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2011-09, Vol.20 (9), p.2475-2489
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_919943258
source IEEE Electronic Library (IEL)
subjects Adaptation model
Algorithms
Applied sciences
Artificial intelligence
Color
Color constancy
Computation
Computational modeling
Computer science
control theory
systems
Computer vision
Criteria
Estimation
Exact sciences and technology
Humans
illuminant estimation
Image color analysis
Image processing
Information, signal and communications theory
Light sources
Pattern recognition. Digital image processing. Computational geometry
performance evaluation
Pixel
Signal processing
State of the art
survey
Taxonomy
Telecommunications and information theory
title Computational Color Constancy: Survey and Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A14%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Color%20Constancy:%20Survey%20and%20Experiments&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Gijsenij,%20A.&rft.date=2011-09-01&rft.volume=20&rft.issue=9&rft.spage=2475&rft.epage=2489&rft.pages=2475-2489&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2011.2118224&rft_dat=%3Cproquest_RIE%3E885056593%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884674799&rft_id=info:pmid/21342844&rft_ieee_id=5719167&rfr_iscdi=true