Existence and controllability results for fractional semilinear differential inclusions

In this paper, we prove the existence and controllability results for fractional semilinear differential inclusions involving the Caputo derivative in Banach spaces. The results are obtained by using fractional calculation, operator semigroups and Bohnenblust–Karlin’s fixed point theorem. At last, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2011-12, Vol.12 (6), p.3642-3653
Hauptverfasser: Wang, JinRong, Zhou, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3653
container_issue 6
container_start_page 3642
container_title Nonlinear analysis: real world applications
container_volume 12
creator Wang, JinRong
Zhou, Yong
description In this paper, we prove the existence and controllability results for fractional semilinear differential inclusions involving the Caputo derivative in Banach spaces. The results are obtained by using fractional calculation, operator semigroups and Bohnenblust–Karlin’s fixed point theorem. At last, an example is given to illustrate the theory.
doi_str_mv 10.1016/j.nonrwa.2011.06.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919940532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S146812181100157X</els_id><sourcerecordid>919940532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-1ada96c9fe6a77b4688efc43006a27ab2412254f614fb62bb9610d7bf1accff43</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-9eWrNpNm0vQiyrB-w4EXxGNJ0Alm6yZqkfvx7s9Szpxlm3neY9yHkGmgFFMTtrnLehS9VMQpQUVFRBidkAW3TlqsGutPcc9GWwKA9Jxcx7iiFBmpYkPfNt40JncZCuaHQ3qXgx1H1drTppwgYpzHFwvhQmKB0st6psYi4z3uHKhSDNQYDumTz3Do9TjFr4iU5M2qMePVXl-TtYfO6fiq3L4_P6_ttqeu6TSWoQXVCdwaFapo-P9mi0bymVCjWqJ5xYGzFjQBuesH6vhNAh6Y3oLQ2htdLcjPfPQT_MWFMcm-jxpzAoZ-i7KDrOF3VLCv5rNTBxxjQyEOwexV-JFB5xCh3csYojxglFTJjzLa72YY5xafFIKO2R16DDaiTHLz9_8AvmIKAVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919940532</pqid></control><display><type>article</type><title>Existence and controllability results for fractional semilinear differential inclusions</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, JinRong ; Zhou, Yong</creator><creatorcontrib>Wang, JinRong ; Zhou, Yong</creatorcontrib><description>In this paper, we prove the existence and controllability results for fractional semilinear differential inclusions involving the Caputo derivative in Banach spaces. The results are obtained by using fractional calculation, operator semigroups and Bohnenblust–Karlin’s fixed point theorem. At last, an example is given to illustrate the theory.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2011.06.021</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Banach space ; Bohnenblust–Karlin’s fixed point theorem ; Controllability ; Derivatives ; Existence ; Fractional semilinear differential inclusions ; Inclusions ; Mathematical analysis ; Nonlinearity ; Operators ; Theorems</subject><ispartof>Nonlinear analysis: real world applications, 2011-12, Vol.12 (6), p.3642-3653</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-1ada96c9fe6a77b4688efc43006a27ab2412254f614fb62bb9610d7bf1accff43</citedby><cites>FETCH-LOGICAL-c338t-1ada96c9fe6a77b4688efc43006a27ab2412254f614fb62bb9610d7bf1accff43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S146812181100157X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, JinRong</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><title>Existence and controllability results for fractional semilinear differential inclusions</title><title>Nonlinear analysis: real world applications</title><description>In this paper, we prove the existence and controllability results for fractional semilinear differential inclusions involving the Caputo derivative in Banach spaces. The results are obtained by using fractional calculation, operator semigroups and Bohnenblust–Karlin’s fixed point theorem. At last, an example is given to illustrate the theory.</description><subject>Banach space</subject><subject>Bohnenblust–Karlin’s fixed point theorem</subject><subject>Controllability</subject><subject>Derivatives</subject><subject>Existence</subject><subject>Fractional semilinear differential inclusions</subject><subject>Inclusions</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Operators</subject><subject>Theorems</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-9eWrNpNm0vQiyrB-w4EXxGNJ0Alm6yZqkfvx7s9Szpxlm3neY9yHkGmgFFMTtrnLehS9VMQpQUVFRBidkAW3TlqsGutPcc9GWwKA9Jxcx7iiFBmpYkPfNt40JncZCuaHQ3qXgx1H1drTppwgYpzHFwvhQmKB0st6psYi4z3uHKhSDNQYDumTz3Do9TjFr4iU5M2qMePVXl-TtYfO6fiq3L4_P6_ttqeu6TSWoQXVCdwaFapo-P9mi0bymVCjWqJ5xYGzFjQBuesH6vhNAh6Y3oLQ2htdLcjPfPQT_MWFMcm-jxpzAoZ-i7KDrOF3VLCv5rNTBxxjQyEOwexV-JFB5xCh3csYojxglFTJjzLa72YY5xafFIKO2R16DDaiTHLz9_8AvmIKAVg</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Wang, JinRong</creator><creator>Zhou, Yong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111201</creationdate><title>Existence and controllability results for fractional semilinear differential inclusions</title><author>Wang, JinRong ; Zhou, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-1ada96c9fe6a77b4688efc43006a27ab2412254f614fb62bb9610d7bf1accff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Banach space</topic><topic>Bohnenblust–Karlin’s fixed point theorem</topic><topic>Controllability</topic><topic>Derivatives</topic><topic>Existence</topic><topic>Fractional semilinear differential inclusions</topic><topic>Inclusions</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Operators</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, JinRong</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, JinRong</au><au>Zhou, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and controllability results for fractional semilinear differential inclusions</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>12</volume><issue>6</issue><spage>3642</spage><epage>3653</epage><pages>3642-3653</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>In this paper, we prove the existence and controllability results for fractional semilinear differential inclusions involving the Caputo derivative in Banach spaces. The results are obtained by using fractional calculation, operator semigroups and Bohnenblust–Karlin’s fixed point theorem. At last, an example is given to illustrate the theory.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2011.06.021</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1468-1218
ispartof Nonlinear analysis: real world applications, 2011-12, Vol.12 (6), p.3642-3653
issn 1468-1218
1878-5719
language eng
recordid cdi_proquest_miscellaneous_919940532
source Elsevier ScienceDirect Journals
subjects Banach space
Bohnenblust–Karlin’s fixed point theorem
Controllability
Derivatives
Existence
Fractional semilinear differential inclusions
Inclusions
Mathematical analysis
Nonlinearity
Operators
Theorems
title Existence and controllability results for fractional semilinear differential inclusions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20controllability%20results%20for%20fractional%20semilinear%20differential%20inclusions&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Wang,%20JinRong&rft.date=2011-12-01&rft.volume=12&rft.issue=6&rft.spage=3642&rft.epage=3653&rft.pages=3642-3653&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2011.06.021&rft_dat=%3Cproquest_cross%3E919940532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919940532&rft_id=info:pmid/&rft_els_id=S146812181100157X&rfr_iscdi=true