Existence and controllability results for fractional semilinear differential inclusions
In this paper, we prove the existence and controllability results for fractional semilinear differential inclusions involving the Caputo derivative in Banach spaces. The results are obtained by using fractional calculation, operator semigroups and Bohnenblust–Karlin’s fixed point theorem. At last, a...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2011-12, Vol.12 (6), p.3642-3653 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3653 |
---|---|
container_issue | 6 |
container_start_page | 3642 |
container_title | Nonlinear analysis: real world applications |
container_volume | 12 |
creator | Wang, JinRong Zhou, Yong |
description | In this paper, we prove the existence and controllability results for fractional semilinear differential inclusions involving the Caputo derivative in Banach spaces. The results are obtained by using fractional calculation, operator semigroups and Bohnenblust–Karlin’s fixed point theorem. At last, an example is given to illustrate the theory. |
doi_str_mv | 10.1016/j.nonrwa.2011.06.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919940532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S146812181100157X</els_id><sourcerecordid>919940532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-1ada96c9fe6a77b4688efc43006a27ab2412254f614fb62bb9610d7bf1accff43</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-9eWrNpNm0vQiyrB-w4EXxGNJ0Alm6yZqkfvx7s9Szpxlm3neY9yHkGmgFFMTtrnLehS9VMQpQUVFRBidkAW3TlqsGutPcc9GWwKA9Jxcx7iiFBmpYkPfNt40JncZCuaHQ3qXgx1H1drTppwgYpzHFwvhQmKB0st6psYi4z3uHKhSDNQYDumTz3Do9TjFr4iU5M2qMePVXl-TtYfO6fiq3L4_P6_ttqeu6TSWoQXVCdwaFapo-P9mi0bymVCjWqJ5xYGzFjQBuesH6vhNAh6Y3oLQ2htdLcjPfPQT_MWFMcm-jxpzAoZ-i7KDrOF3VLCv5rNTBxxjQyEOwexV-JFB5xCh3csYojxglFTJjzLa72YY5xafFIKO2R16DDaiTHLz9_8AvmIKAVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919940532</pqid></control><display><type>article</type><title>Existence and controllability results for fractional semilinear differential inclusions</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, JinRong ; Zhou, Yong</creator><creatorcontrib>Wang, JinRong ; Zhou, Yong</creatorcontrib><description>In this paper, we prove the existence and controllability results for fractional semilinear differential inclusions involving the Caputo derivative in Banach spaces. The results are obtained by using fractional calculation, operator semigroups and Bohnenblust–Karlin’s fixed point theorem. At last, an example is given to illustrate the theory.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2011.06.021</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Banach space ; Bohnenblust–Karlin’s fixed point theorem ; Controllability ; Derivatives ; Existence ; Fractional semilinear differential inclusions ; Inclusions ; Mathematical analysis ; Nonlinearity ; Operators ; Theorems</subject><ispartof>Nonlinear analysis: real world applications, 2011-12, Vol.12 (6), p.3642-3653</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-1ada96c9fe6a77b4688efc43006a27ab2412254f614fb62bb9610d7bf1accff43</citedby><cites>FETCH-LOGICAL-c338t-1ada96c9fe6a77b4688efc43006a27ab2412254f614fb62bb9610d7bf1accff43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S146812181100157X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, JinRong</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><title>Existence and controllability results for fractional semilinear differential inclusions</title><title>Nonlinear analysis: real world applications</title><description>In this paper, we prove the existence and controllability results for fractional semilinear differential inclusions involving the Caputo derivative in Banach spaces. The results are obtained by using fractional calculation, operator semigroups and Bohnenblust–Karlin’s fixed point theorem. At last, an example is given to illustrate the theory.</description><subject>Banach space</subject><subject>Bohnenblust–Karlin’s fixed point theorem</subject><subject>Controllability</subject><subject>Derivatives</subject><subject>Existence</subject><subject>Fractional semilinear differential inclusions</subject><subject>Inclusions</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Operators</subject><subject>Theorems</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-9eWrNpNm0vQiyrB-w4EXxGNJ0Alm6yZqkfvx7s9Szpxlm3neY9yHkGmgFFMTtrnLehS9VMQpQUVFRBidkAW3TlqsGutPcc9GWwKA9Jxcx7iiFBmpYkPfNt40JncZCuaHQ3qXgx1H1drTppwgYpzHFwvhQmKB0st6psYi4z3uHKhSDNQYDumTz3Do9TjFr4iU5M2qMePVXl-TtYfO6fiq3L4_P6_ttqeu6TSWoQXVCdwaFapo-P9mi0bymVCjWqJ5xYGzFjQBuesH6vhNAh6Y3oLQ2htdLcjPfPQT_MWFMcm-jxpzAoZ-i7KDrOF3VLCv5rNTBxxjQyEOwexV-JFB5xCh3csYojxglFTJjzLa72YY5xafFIKO2R16DDaiTHLz9_8AvmIKAVg</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Wang, JinRong</creator><creator>Zhou, Yong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111201</creationdate><title>Existence and controllability results for fractional semilinear differential inclusions</title><author>Wang, JinRong ; Zhou, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-1ada96c9fe6a77b4688efc43006a27ab2412254f614fb62bb9610d7bf1accff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Banach space</topic><topic>Bohnenblust–Karlin’s fixed point theorem</topic><topic>Controllability</topic><topic>Derivatives</topic><topic>Existence</topic><topic>Fractional semilinear differential inclusions</topic><topic>Inclusions</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Operators</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, JinRong</creatorcontrib><creatorcontrib>Zhou, Yong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, JinRong</au><au>Zhou, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and controllability results for fractional semilinear differential inclusions</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>12</volume><issue>6</issue><spage>3642</spage><epage>3653</epage><pages>3642-3653</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>In this paper, we prove the existence and controllability results for fractional semilinear differential inclusions involving the Caputo derivative in Banach spaces. The results are obtained by using fractional calculation, operator semigroups and Bohnenblust–Karlin’s fixed point theorem. At last, an example is given to illustrate the theory.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2011.06.021</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-1218 |
ispartof | Nonlinear analysis: real world applications, 2011-12, Vol.12 (6), p.3642-3653 |
issn | 1468-1218 1878-5719 |
language | eng |
recordid | cdi_proquest_miscellaneous_919940532 |
source | Elsevier ScienceDirect Journals |
subjects | Banach space Bohnenblust–Karlin’s fixed point theorem Controllability Derivatives Existence Fractional semilinear differential inclusions Inclusions Mathematical analysis Nonlinearity Operators Theorems |
title | Existence and controllability results for fractional semilinear differential inclusions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T00%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20controllability%20results%20for%20fractional%20semilinear%20differential%20inclusions&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Wang,%20JinRong&rft.date=2011-12-01&rft.volume=12&rft.issue=6&rft.spage=3642&rft.epage=3653&rft.pages=3642-3653&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2011.06.021&rft_dat=%3Cproquest_cross%3E919940532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919940532&rft_id=info:pmid/&rft_els_id=S146812181100157X&rfr_iscdi=true |