Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation
A conceptual analysis of approaches to describing concentration heterogeneities and structural and phase transformations in submicroscopic and nanocrystalline aggregates formed by cold severe plastic deformation (SPD) is given. The decisive role of the vacancy diffusion mechanism in forming chemical...
Gespeichert in:
Veröffentlicht in: | Metal science and heat treatment 2007-11, Vol.49 (11-12), p.503-513 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 513 |
---|---|
container_issue | 11-12 |
container_start_page | 503 |
container_title | Metal science and heat treatment |
container_volume | 49 |
creator | Gapontsev, V L Koloskov, V M |
description | A conceptual analysis of approaches to describing concentration heterogeneities and structural and phase transformations in submicroscopic and nanocrystalline aggregates formed by cold severe plastic deformation (SPD) is given. The decisive role of the vacancy diffusion mechanism in forming chemical heterogeneities in activated alloys is demonstrated. The concept of the nonequilibrium hole gas and the disclination-dislocation deformation mechanism is used to develop a model approach to describing the behavior of metal systems produced by SPD. Model calculations are compared with experimental data and the main trends for further refining of the model of activated alloy formation are formulated. |
doi_str_mv | 10.1007/s11041-007-0093-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919934402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425457711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-87381ec3a2be783999e3b9ff9480942e95305e181999e5833cecadcab8f4deb53</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouH78AG_Bgx-HatJJN8lRFr9g0YueQ5ombKRt3KRd2H9v6noQDx6GGWaed5jhReiMkhtKCL9NlBJGi1zmkFDwPTSjFYdCSA77aEZIOS_InMMhOkrpg5CsImKG4kvo7Xr0ra-jHzu80Ub3ZlukwXdjqwfb4MY7NyYfenzl-2Y0v1vXWCc8rCzutO9xZ81K9z51ODiszeA33wt024YtdiF2esiaE3TgdJvs6U8-Ru8P92-Lp2L5-vi8uFsWBqAaCsFBUGtAl7XlAqSUFmrpnGSCSFZaWQGpLBV0mlQCwFijG6Nr4Vhj6wqO0eVu72cM69GmQXU-Gdu2urdhTEpmJTBGykxe_Evmezgr-TyD53_AjzDGPn-hhABWlhWbILqDTAwpRevUZ_SdjltFiZrMUjuz1FROZikOX0PFiNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883422546</pqid></control><display><type>article</type><title>Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation</title><source>SpringerNature Journals</source><creator>Gapontsev, V L ; Koloskov, V M</creator><creatorcontrib>Gapontsev, V L ; Koloskov, V M</creatorcontrib><description>A conceptual analysis of approaches to describing concentration heterogeneities and structural and phase transformations in submicroscopic and nanocrystalline aggregates formed by cold severe plastic deformation (SPD) is given. The decisive role of the vacancy diffusion mechanism in forming chemical heterogeneities in activated alloys is demonstrated. The concept of the nonequilibrium hole gas and the disclination-dislocation deformation mechanism is used to develop a model approach to describing the behavior of metal systems produced by SPD. Model calculations are compared with experimental data and the main trends for further refining of the model of activated alloy formation are formulated.</description><identifier>ISSN: 0026-0673</identifier><identifier>EISSN: 1573-8973</identifier><identifier>DOI: 10.1007/s11041-007-0093-7</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Activated ; Aggregates ; Alloys ; Deformation mechanisms ; Diffusion ; Heterogeneity ; Mathematical models ; Nanocrystals ; Plastic deformation</subject><ispartof>Metal science and heat treatment, 2007-11, Vol.49 (11-12), p.503-513</ispartof><rights>Springer Science+Business Media, Inc. 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-87381ec3a2be783999e3b9ff9480942e95305e181999e5833cecadcab8f4deb53</citedby><cites>FETCH-LOGICAL-c335t-87381ec3a2be783999e3b9ff9480942e95305e181999e5833cecadcab8f4deb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gapontsev, V L</creatorcontrib><creatorcontrib>Koloskov, V M</creatorcontrib><title>Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation</title><title>Metal science and heat treatment</title><description>A conceptual analysis of approaches to describing concentration heterogeneities and structural and phase transformations in submicroscopic and nanocrystalline aggregates formed by cold severe plastic deformation (SPD) is given. The decisive role of the vacancy diffusion mechanism in forming chemical heterogeneities in activated alloys is demonstrated. The concept of the nonequilibrium hole gas and the disclination-dislocation deformation mechanism is used to develop a model approach to describing the behavior of metal systems produced by SPD. Model calculations are compared with experimental data and the main trends for further refining of the model of activated alloy formation are formulated.</description><subject>Activated</subject><subject>Aggregates</subject><subject>Alloys</subject><subject>Deformation mechanisms</subject><subject>Diffusion</subject><subject>Heterogeneity</subject><subject>Mathematical models</subject><subject>Nanocrystals</subject><subject>Plastic deformation</subject><issn>0026-0673</issn><issn>1573-8973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU1LxDAQhoMouH78AG_Bgx-HatJJN8lRFr9g0YueQ5ombKRt3KRd2H9v6noQDx6GGWaed5jhReiMkhtKCL9NlBJGi1zmkFDwPTSjFYdCSA77aEZIOS_InMMhOkrpg5CsImKG4kvo7Xr0ra-jHzu80Ub3ZlukwXdjqwfb4MY7NyYfenzl-2Y0v1vXWCc8rCzutO9xZ81K9z51ODiszeA33wt024YtdiF2esiaE3TgdJvs6U8-Ru8P92-Lp2L5-vi8uFsWBqAaCsFBUGtAl7XlAqSUFmrpnGSCSFZaWQGpLBV0mlQCwFijG6Nr4Vhj6wqO0eVu72cM69GmQXU-Gdu2urdhTEpmJTBGykxe_Evmezgr-TyD53_AjzDGPn-hhABWlhWbILqDTAwpRevUZ_SdjltFiZrMUjuz1FROZikOX0PFiNA</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Gapontsev, V L</creator><creator>Koloskov, V M</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20071101</creationdate><title>Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation</title><author>Gapontsev, V L ; Koloskov, V M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-87381ec3a2be783999e3b9ff9480942e95305e181999e5833cecadcab8f4deb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Activated</topic><topic>Aggregates</topic><topic>Alloys</topic><topic>Deformation mechanisms</topic><topic>Diffusion</topic><topic>Heterogeneity</topic><topic>Mathematical models</topic><topic>Nanocrystals</topic><topic>Plastic deformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gapontsev, V L</creatorcontrib><creatorcontrib>Koloskov, V M</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Metal science and heat treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gapontsev, V L</au><au>Koloskov, V M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation</atitle><jtitle>Metal science and heat treatment</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>49</volume><issue>11-12</issue><spage>503</spage><epage>513</epage><pages>503-513</pages><issn>0026-0673</issn><eissn>1573-8973</eissn><abstract>A conceptual analysis of approaches to describing concentration heterogeneities and structural and phase transformations in submicroscopic and nanocrystalline aggregates formed by cold severe plastic deformation (SPD) is given. The decisive role of the vacancy diffusion mechanism in forming chemical heterogeneities in activated alloys is demonstrated. The concept of the nonequilibrium hole gas and the disclination-dislocation deformation mechanism is used to develop a model approach to describing the behavior of metal systems produced by SPD. Model calculations are compared with experimental data and the main trends for further refining of the model of activated alloy formation are formulated.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11041-007-0093-7</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-0673 |
ispartof | Metal science and heat treatment, 2007-11, Vol.49 (11-12), p.503-513 |
issn | 0026-0673 1573-8973 |
language | eng |
recordid | cdi_proquest_miscellaneous_919934402 |
source | SpringerNature Journals |
subjects | Activated Aggregates Alloys Deformation mechanisms Diffusion Heterogeneity Mathematical models Nanocrystals Plastic deformation |
title | Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20vacancy-stimulated%20diffusion%20(induced%20diffusion)%20as%20the%20main%20mechanism%20of%20activated%20alloy%20formation&rft.jtitle=Metal%20science%20and%20heat%20treatment&rft.au=Gapontsev,%20V%20L&rft.date=2007-11-01&rft.volume=49&rft.issue=11-12&rft.spage=503&rft.epage=513&rft.pages=503-513&rft.issn=0026-0673&rft.eissn=1573-8973&rft_id=info:doi/10.1007/s11041-007-0093-7&rft_dat=%3Cproquest_cross%3E2425457711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883422546&rft_id=info:pmid/&rfr_iscdi=true |