Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation

A conceptual analysis of approaches to describing concentration heterogeneities and structural and phase transformations in submicroscopic and nanocrystalline aggregates formed by cold severe plastic deformation (SPD) is given. The decisive role of the vacancy diffusion mechanism in forming chemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metal science and heat treatment 2007-11, Vol.49 (11-12), p.503-513
Hauptverfasser: Gapontsev, V L, Koloskov, V M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 513
container_issue 11-12
container_start_page 503
container_title Metal science and heat treatment
container_volume 49
creator Gapontsev, V L
Koloskov, V M
description A conceptual analysis of approaches to describing concentration heterogeneities and structural and phase transformations in submicroscopic and nanocrystalline aggregates formed by cold severe plastic deformation (SPD) is given. The decisive role of the vacancy diffusion mechanism in forming chemical heterogeneities in activated alloys is demonstrated. The concept of the nonequilibrium hole gas and the disclination-dislocation deformation mechanism is used to develop a model approach to describing the behavior of metal systems produced by SPD. Model calculations are compared with experimental data and the main trends for further refining of the model of activated alloy formation are formulated.
doi_str_mv 10.1007/s11041-007-0093-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919934402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2425457711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-87381ec3a2be783999e3b9ff9480942e95305e181999e5833cecadcab8f4deb53</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhoMouH78AG_Bgx-HatJJN8lRFr9g0YueQ5ombKRt3KRd2H9v6noQDx6GGWaed5jhReiMkhtKCL9NlBJGi1zmkFDwPTSjFYdCSA77aEZIOS_InMMhOkrpg5CsImKG4kvo7Xr0ra-jHzu80Ub3ZlukwXdjqwfb4MY7NyYfenzl-2Y0v1vXWCc8rCzutO9xZ81K9z51ODiszeA33wt024YtdiF2esiaE3TgdJvs6U8-Ru8P92-Lp2L5-vi8uFsWBqAaCsFBUGtAl7XlAqSUFmrpnGSCSFZaWQGpLBV0mlQCwFijG6Nr4Vhj6wqO0eVu72cM69GmQXU-Gdu2urdhTEpmJTBGykxe_Evmezgr-TyD53_AjzDGPn-hhABWlhWbILqDTAwpRevUZ_SdjltFiZrMUjuz1FROZikOX0PFiNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883422546</pqid></control><display><type>article</type><title>Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation</title><source>SpringerNature Journals</source><creator>Gapontsev, V L ; Koloskov, V M</creator><creatorcontrib>Gapontsev, V L ; Koloskov, V M</creatorcontrib><description>A conceptual analysis of approaches to describing concentration heterogeneities and structural and phase transformations in submicroscopic and nanocrystalline aggregates formed by cold severe plastic deformation (SPD) is given. The decisive role of the vacancy diffusion mechanism in forming chemical heterogeneities in activated alloys is demonstrated. The concept of the nonequilibrium hole gas and the disclination-dislocation deformation mechanism is used to develop a model approach to describing the behavior of metal systems produced by SPD. Model calculations are compared with experimental data and the main trends for further refining of the model of activated alloy formation are formulated.</description><identifier>ISSN: 0026-0673</identifier><identifier>EISSN: 1573-8973</identifier><identifier>DOI: 10.1007/s11041-007-0093-7</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Activated ; Aggregates ; Alloys ; Deformation mechanisms ; Diffusion ; Heterogeneity ; Mathematical models ; Nanocrystals ; Plastic deformation</subject><ispartof>Metal science and heat treatment, 2007-11, Vol.49 (11-12), p.503-513</ispartof><rights>Springer Science+Business Media, Inc. 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-87381ec3a2be783999e3b9ff9480942e95305e181999e5833cecadcab8f4deb53</citedby><cites>FETCH-LOGICAL-c335t-87381ec3a2be783999e3b9ff9480942e95305e181999e5833cecadcab8f4deb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gapontsev, V L</creatorcontrib><creatorcontrib>Koloskov, V M</creatorcontrib><title>Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation</title><title>Metal science and heat treatment</title><description>A conceptual analysis of approaches to describing concentration heterogeneities and structural and phase transformations in submicroscopic and nanocrystalline aggregates formed by cold severe plastic deformation (SPD) is given. The decisive role of the vacancy diffusion mechanism in forming chemical heterogeneities in activated alloys is demonstrated. The concept of the nonequilibrium hole gas and the disclination-dislocation deformation mechanism is used to develop a model approach to describing the behavior of metal systems produced by SPD. Model calculations are compared with experimental data and the main trends for further refining of the model of activated alloy formation are formulated.</description><subject>Activated</subject><subject>Aggregates</subject><subject>Alloys</subject><subject>Deformation mechanisms</subject><subject>Diffusion</subject><subject>Heterogeneity</subject><subject>Mathematical models</subject><subject>Nanocrystals</subject><subject>Plastic deformation</subject><issn>0026-0673</issn><issn>1573-8973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU1LxDAQhoMouH78AG_Bgx-HatJJN8lRFr9g0YueQ5ombKRt3KRd2H9v6noQDx6GGWaed5jhReiMkhtKCL9NlBJGi1zmkFDwPTSjFYdCSA77aEZIOS_InMMhOkrpg5CsImKG4kvo7Xr0ra-jHzu80Ub3ZlukwXdjqwfb4MY7NyYfenzl-2Y0v1vXWCc8rCzutO9xZ81K9z51ODiszeA33wt024YtdiF2esiaE3TgdJvs6U8-Ru8P92-Lp2L5-vi8uFsWBqAaCsFBUGtAl7XlAqSUFmrpnGSCSFZaWQGpLBV0mlQCwFijG6Nr4Vhj6wqO0eVu72cM69GmQXU-Gdu2urdhTEpmJTBGykxe_Evmezgr-TyD53_AjzDGPn-hhABWlhWbILqDTAwpRevUZ_SdjltFiZrMUjuz1FROZikOX0PFiNA</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Gapontsev, V L</creator><creator>Koloskov, V M</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20071101</creationdate><title>Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation</title><author>Gapontsev, V L ; Koloskov, V M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-87381ec3a2be783999e3b9ff9480942e95305e181999e5833cecadcab8f4deb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Activated</topic><topic>Aggregates</topic><topic>Alloys</topic><topic>Deformation mechanisms</topic><topic>Diffusion</topic><topic>Heterogeneity</topic><topic>Mathematical models</topic><topic>Nanocrystals</topic><topic>Plastic deformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gapontsev, V L</creatorcontrib><creatorcontrib>Koloskov, V M</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Metal science and heat treatment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gapontsev, V L</au><au>Koloskov, V M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation</atitle><jtitle>Metal science and heat treatment</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>49</volume><issue>11-12</issue><spage>503</spage><epage>513</epage><pages>503-513</pages><issn>0026-0673</issn><eissn>1573-8973</eissn><abstract>A conceptual analysis of approaches to describing concentration heterogeneities and structural and phase transformations in submicroscopic and nanocrystalline aggregates formed by cold severe plastic deformation (SPD) is given. The decisive role of the vacancy diffusion mechanism in forming chemical heterogeneities in activated alloys is demonstrated. The concept of the nonequilibrium hole gas and the disclination-dislocation deformation mechanism is used to develop a model approach to describing the behavior of metal systems produced by SPD. Model calculations are compared with experimental data and the main trends for further refining of the model of activated alloy formation are formulated.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11041-007-0093-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-0673
ispartof Metal science and heat treatment, 2007-11, Vol.49 (11-12), p.503-513
issn 0026-0673
1573-8973
language eng
recordid cdi_proquest_miscellaneous_919934402
source SpringerNature Journals
subjects Activated
Aggregates
Alloys
Deformation mechanisms
Diffusion
Heterogeneity
Mathematical models
Nanocrystals
Plastic deformation
title Nonequilibrium vacancy-stimulated diffusion (induced diffusion) as the main mechanism of activated alloy formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20vacancy-stimulated%20diffusion%20(induced%20diffusion)%20as%20the%20main%20mechanism%20of%20activated%20alloy%20formation&rft.jtitle=Metal%20science%20and%20heat%20treatment&rft.au=Gapontsev,%20V%20L&rft.date=2007-11-01&rft.volume=49&rft.issue=11-12&rft.spage=503&rft.epage=513&rft.pages=503-513&rft.issn=0026-0673&rft.eissn=1573-8973&rft_id=info:doi/10.1007/s11041-007-0093-7&rft_dat=%3Cproquest_cross%3E2425457711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883422546&rft_id=info:pmid/&rfr_iscdi=true