Comparison of the results of modeling convective heat transfer in turbulent flows with experimental data
The results of simulation of natural turbulent convection in a square air cavity measuring 0.75 × 0.75 m and having isothermal vertical and highly heat-conducting horizontal walls are compared with the experimental data obtained for this cavity at a Rayleigh number equal to 1.58⋅10 9 . In carrying o...
Gespeichert in:
Veröffentlicht in: | Journal of engineering physics and thermophysics 2010-11, Vol.83 (5), p.967-976 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 976 |
---|---|
container_issue | 5 |
container_start_page | 967 |
container_title | Journal of engineering physics and thermophysics |
container_volume | 83 |
creator | Fomichev, A. I. |
description | The results of simulation of natural turbulent convection in a square air cavity measuring 0.75 × 0.75 m and having isothermal vertical and highly heat-conducting horizontal walls are compared with the experimental data obtained for this cavity at a Rayleigh number equal to 1.58⋅10
9
. In carrying out numerical investigations, a two-dimensional, low-turbulence, two-parameter k–ε model known as the low-Reynolds-number k–ε turbulence model was used. The results of investigations are presented for the distributions of the velocity and temperature components, as well as local and average values of the Nusselt number. The model was also used in calculating forced turbulent convection in a low-velocity channel with a backward facing step. The results of modeling are compared with experimental data on heat transfer in a turbulent separation flow downstream of the step. In both cases, a satisfactory agreement of the measured values with those predicted by the k–ε turbulence model is obtained. |
doi_str_mv | 10.1007/s10891-010-0420-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_919934174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A358315710</galeid><sourcerecordid>A358315710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-b1b351e70cb6245e32bea367614e8a658a39997f8f934093670968b1bc331b793</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhSMEEqXlB3CzxAFxSPHESRwfqxWFSpWQKJV6s5zseNeVYy-205Z_z6zCgSIhH2zPfM8av1dV74CfA-fyUwY-KKg58Jq3Da-7F9UJdFLUg4S7l3TmfUPdpntdvcn5nnOuhlacVPtNnA8muRwDi5aVPbKEefElH69z3KJ3YcemGB5wKu4B2R5NYSWZkC0m5gIrSxoXj6Ew6-NjZo-u7Bk-HTC5marGs60p5qx6ZY3P-PbPflrdXn7-sflaX3_7crW5uK6ntoFSjzCKDlDyaeybtkPRjGhEL3tocTB9NxihlJJ2sEq0XFGHq34g1SQEjFKJ0-rD-u4hxZ8L5qJnlyf03gSMS9YKFClBtkS-_4e8j0sKNJwGADG0nZScqPOV2hmP2gUb6e8TrS3OjmxB66h-IbpBkN9wFHx8JiCm4FPZmSVnfXXz_TkLKzulmHNCqw9kmkm_NHB9zFWvuWrKVR9z1R1pmlWTiQ07TH-N_V_RbyJzpA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113845770</pqid></control><display><type>article</type><title>Comparison of the results of modeling convective heat transfer in turbulent flows with experimental data</title><source>SpringerLink Journals</source><creator>Fomichev, A. I.</creator><creatorcontrib>Fomichev, A. I.</creatorcontrib><description>The results of simulation of natural turbulent convection in a square air cavity measuring 0.75 × 0.75 m and having isothermal vertical and highly heat-conducting horizontal walls are compared with the experimental data obtained for this cavity at a Rayleigh number equal to 1.58⋅10
9
. In carrying out numerical investigations, a two-dimensional, low-turbulence, two-parameter k–ε model known as the low-Reynolds-number k–ε turbulence model was used. The results of investigations are presented for the distributions of the velocity and temperature components, as well as local and average values of the Nusselt number. The model was also used in calculating forced turbulent convection in a low-velocity channel with a backward facing step. The results of modeling are compared with experimental data on heat transfer in a turbulent separation flow downstream of the step. In both cases, a satisfactory agreement of the measured values with those predicted by the k–ε turbulence model is obtained.</description><identifier>ISSN: 1062-0125</identifier><identifier>EISSN: 1573-871X</identifier><identifier>DOI: 10.1007/s10891-010-0420-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aerodynamics ; Classical Mechanics ; Comparative analysis ; Complex Systems ; Computational fluid dynamics ; Engineering ; Engineering Thermodynamics ; Fluid flow ; Heat and Mass Transfer ; Heat transfer ; Holes ; Industrial Chemistry/Chemical Engineering ; Mathematical models ; Studies ; Thermodynamics ; Turbulence ; Turbulence models ; Turbulent flow</subject><ispartof>Journal of engineering physics and thermophysics, 2010-11, Vol.83 (5), p.967-976</ispartof><rights>Springer Science+Business Media, Inc. 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-b1b351e70cb6245e32bea367614e8a658a39997f8f934093670968b1bc331b793</citedby><cites>FETCH-LOGICAL-c421t-b1b351e70cb6245e32bea367614e8a658a39997f8f934093670968b1bc331b793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10891-010-0420-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10891-010-0420-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fomichev, A. I.</creatorcontrib><title>Comparison of the results of modeling convective heat transfer in turbulent flows with experimental data</title><title>Journal of engineering physics and thermophysics</title><addtitle>J Eng Phys Thermophy</addtitle><description>The results of simulation of natural turbulent convection in a square air cavity measuring 0.75 × 0.75 m and having isothermal vertical and highly heat-conducting horizontal walls are compared with the experimental data obtained for this cavity at a Rayleigh number equal to 1.58⋅10
9
. In carrying out numerical investigations, a two-dimensional, low-turbulence, two-parameter k–ε model known as the low-Reynolds-number k–ε turbulence model was used. The results of investigations are presented for the distributions of the velocity and temperature components, as well as local and average values of the Nusselt number. The model was also used in calculating forced turbulent convection in a low-velocity channel with a backward facing step. The results of modeling are compared with experimental data on heat transfer in a turbulent separation flow downstream of the step. In both cases, a satisfactory agreement of the measured values with those predicted by the k–ε turbulence model is obtained.</description><subject>Aerodynamics</subject><subject>Classical Mechanics</subject><subject>Comparative analysis</subject><subject>Complex Systems</subject><subject>Computational fluid dynamics</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Fluid flow</subject><subject>Heat and Mass Transfer</subject><subject>Heat transfer</subject><subject>Holes</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical models</subject><subject>Studies</subject><subject>Thermodynamics</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><issn>1062-0125</issn><issn>1573-871X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhSMEEqXlB3CzxAFxSPHESRwfqxWFSpWQKJV6s5zseNeVYy-205Z_z6zCgSIhH2zPfM8av1dV74CfA-fyUwY-KKg58Jq3Da-7F9UJdFLUg4S7l3TmfUPdpntdvcn5nnOuhlacVPtNnA8muRwDi5aVPbKEefElH69z3KJ3YcemGB5wKu4B2R5NYSWZkC0m5gIrSxoXj6Ew6-NjZo-u7Bk-HTC5marGs60p5qx6ZY3P-PbPflrdXn7-sflaX3_7crW5uK6ntoFSjzCKDlDyaeybtkPRjGhEL3tocTB9NxihlJJ2sEq0XFGHq34g1SQEjFKJ0-rD-u4hxZ8L5qJnlyf03gSMS9YKFClBtkS-_4e8j0sKNJwGADG0nZScqPOV2hmP2gUb6e8TrS3OjmxB66h-IbpBkN9wFHx8JiCm4FPZmSVnfXXz_TkLKzulmHNCqw9kmkm_NHB9zFWvuWrKVR9z1R1pmlWTiQ07TH-N_V_RbyJzpA8</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Fomichev, A. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20101101</creationdate><title>Comparison of the results of modeling convective heat transfer in turbulent flows with experimental data</title><author>Fomichev, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-b1b351e70cb6245e32bea367614e8a658a39997f8f934093670968b1bc331b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerodynamics</topic><topic>Classical Mechanics</topic><topic>Comparative analysis</topic><topic>Complex Systems</topic><topic>Computational fluid dynamics</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Fluid flow</topic><topic>Heat and Mass Transfer</topic><topic>Heat transfer</topic><topic>Holes</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical models</topic><topic>Studies</topic><topic>Thermodynamics</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fomichev, A. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of engineering physics and thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fomichev, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the results of modeling convective heat transfer in turbulent flows with experimental data</atitle><jtitle>Journal of engineering physics and thermophysics</jtitle><stitle>J Eng Phys Thermophy</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>83</volume><issue>5</issue><spage>967</spage><epage>976</epage><pages>967-976</pages><issn>1062-0125</issn><eissn>1573-871X</eissn><abstract>The results of simulation of natural turbulent convection in a square air cavity measuring 0.75 × 0.75 m and having isothermal vertical and highly heat-conducting horizontal walls are compared with the experimental data obtained for this cavity at a Rayleigh number equal to 1.58⋅10
9
. In carrying out numerical investigations, a two-dimensional, low-turbulence, two-parameter k–ε model known as the low-Reynolds-number k–ε turbulence model was used. The results of investigations are presented for the distributions of the velocity and temperature components, as well as local and average values of the Nusselt number. The model was also used in calculating forced turbulent convection in a low-velocity channel with a backward facing step. The results of modeling are compared with experimental data on heat transfer in a turbulent separation flow downstream of the step. In both cases, a satisfactory agreement of the measured values with those predicted by the k–ε turbulence model is obtained.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10891-010-0420-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1062-0125 |
ispartof | Journal of engineering physics and thermophysics, 2010-11, Vol.83 (5), p.967-976 |
issn | 1062-0125 1573-871X |
language | eng |
recordid | cdi_proquest_miscellaneous_919934174 |
source | SpringerLink Journals |
subjects | Aerodynamics Classical Mechanics Comparative analysis Complex Systems Computational fluid dynamics Engineering Engineering Thermodynamics Fluid flow Heat and Mass Transfer Heat transfer Holes Industrial Chemistry/Chemical Engineering Mathematical models Studies Thermodynamics Turbulence Turbulence models Turbulent flow |
title | Comparison of the results of modeling convective heat transfer in turbulent flows with experimental data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20results%20of%20modeling%20convective%20heat%20transfer%20in%20turbulent%20flows%20with%20experimental%20data&rft.jtitle=Journal%20of%20engineering%20physics%20and%20thermophysics&rft.au=Fomichev,%20A.%20I.&rft.date=2010-11-01&rft.volume=83&rft.issue=5&rft.spage=967&rft.epage=976&rft.pages=967-976&rft.issn=1062-0125&rft.eissn=1573-871X&rft_id=info:doi/10.1007/s10891-010-0420-5&rft_dat=%3Cgale_proqu%3EA358315710%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1113845770&rft_id=info:pmid/&rft_galeid=A358315710&rfr_iscdi=true |