Comparison of the results of modeling convective heat transfer in turbulent flows with experimental data

The results of simulation of natural turbulent convection in a square air cavity measuring 0.75 × 0.75 m and having isothermal vertical and highly heat-conducting horizontal walls are compared with the experimental data obtained for this cavity at a Rayleigh number equal to 1.58⋅10 9 . In carrying o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering physics and thermophysics 2010-11, Vol.83 (5), p.967-976
1. Verfasser: Fomichev, A. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 976
container_issue 5
container_start_page 967
container_title Journal of engineering physics and thermophysics
container_volume 83
creator Fomichev, A. I.
description The results of simulation of natural turbulent convection in a square air cavity measuring 0.75 × 0.75 m and having isothermal vertical and highly heat-conducting horizontal walls are compared with the experimental data obtained for this cavity at a Rayleigh number equal to 1.58⋅10 9 . In carrying out numerical investigations, a two-dimensional, low-turbulence, two-parameter k–ε model known as the low-Reynolds-number k–ε turbulence model was used. The results of investigations are presented for the distributions of the velocity and temperature components, as well as local and average values of the Nusselt number. The model was also used in calculating forced turbulent convection in a low-velocity channel with a backward facing step. The results of modeling are compared with experimental data on heat transfer in a turbulent separation flow downstream of the step. In both cases, a satisfactory agreement of the measured values with those predicted by the k–ε turbulence model is obtained.
doi_str_mv 10.1007/s10891-010-0420-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_919934174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A358315710</galeid><sourcerecordid>A358315710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-b1b351e70cb6245e32bea367614e8a658a39997f8f934093670968b1bc331b793</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhSMEEqXlB3CzxAFxSPHESRwfqxWFSpWQKJV6s5zseNeVYy-205Z_z6zCgSIhH2zPfM8av1dV74CfA-fyUwY-KKg58Jq3Da-7F9UJdFLUg4S7l3TmfUPdpntdvcn5nnOuhlacVPtNnA8muRwDi5aVPbKEefElH69z3KJ3YcemGB5wKu4B2R5NYSWZkC0m5gIrSxoXj6Ew6-NjZo-u7Bk-HTC5marGs60p5qx6ZY3P-PbPflrdXn7-sflaX3_7crW5uK6ntoFSjzCKDlDyaeybtkPRjGhEL3tocTB9NxihlJJ2sEq0XFGHq34g1SQEjFKJ0-rD-u4hxZ8L5qJnlyf03gSMS9YKFClBtkS-_4e8j0sKNJwGADG0nZScqPOV2hmP2gUb6e8TrS3OjmxB66h-IbpBkN9wFHx8JiCm4FPZmSVnfXXz_TkLKzulmHNCqw9kmkm_NHB9zFWvuWrKVR9z1R1pmlWTiQ07TH-N_V_RbyJzpA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113845770</pqid></control><display><type>article</type><title>Comparison of the results of modeling convective heat transfer in turbulent flows with experimental data</title><source>SpringerLink Journals</source><creator>Fomichev, A. I.</creator><creatorcontrib>Fomichev, A. I.</creatorcontrib><description>The results of simulation of natural turbulent convection in a square air cavity measuring 0.75 × 0.75 m and having isothermal vertical and highly heat-conducting horizontal walls are compared with the experimental data obtained for this cavity at a Rayleigh number equal to 1.58⋅10 9 . In carrying out numerical investigations, a two-dimensional, low-turbulence, two-parameter k–ε model known as the low-Reynolds-number k–ε turbulence model was used. The results of investigations are presented for the distributions of the velocity and temperature components, as well as local and average values of the Nusselt number. The model was also used in calculating forced turbulent convection in a low-velocity channel with a backward facing step. The results of modeling are compared with experimental data on heat transfer in a turbulent separation flow downstream of the step. In both cases, a satisfactory agreement of the measured values with those predicted by the k–ε turbulence model is obtained.</description><identifier>ISSN: 1062-0125</identifier><identifier>EISSN: 1573-871X</identifier><identifier>DOI: 10.1007/s10891-010-0420-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aerodynamics ; Classical Mechanics ; Comparative analysis ; Complex Systems ; Computational fluid dynamics ; Engineering ; Engineering Thermodynamics ; Fluid flow ; Heat and Mass Transfer ; Heat transfer ; Holes ; Industrial Chemistry/Chemical Engineering ; Mathematical models ; Studies ; Thermodynamics ; Turbulence ; Turbulence models ; Turbulent flow</subject><ispartof>Journal of engineering physics and thermophysics, 2010-11, Vol.83 (5), p.967-976</ispartof><rights>Springer Science+Business Media, Inc. 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-b1b351e70cb6245e32bea367614e8a658a39997f8f934093670968b1bc331b793</citedby><cites>FETCH-LOGICAL-c421t-b1b351e70cb6245e32bea367614e8a658a39997f8f934093670968b1bc331b793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10891-010-0420-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10891-010-0420-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fomichev, A. I.</creatorcontrib><title>Comparison of the results of modeling convective heat transfer in turbulent flows with experimental data</title><title>Journal of engineering physics and thermophysics</title><addtitle>J Eng Phys Thermophy</addtitle><description>The results of simulation of natural turbulent convection in a square air cavity measuring 0.75 × 0.75 m and having isothermal vertical and highly heat-conducting horizontal walls are compared with the experimental data obtained for this cavity at a Rayleigh number equal to 1.58⋅10 9 . In carrying out numerical investigations, a two-dimensional, low-turbulence, two-parameter k–ε model known as the low-Reynolds-number k–ε turbulence model was used. The results of investigations are presented for the distributions of the velocity and temperature components, as well as local and average values of the Nusselt number. The model was also used in calculating forced turbulent convection in a low-velocity channel with a backward facing step. The results of modeling are compared with experimental data on heat transfer in a turbulent separation flow downstream of the step. In both cases, a satisfactory agreement of the measured values with those predicted by the k–ε turbulence model is obtained.</description><subject>Aerodynamics</subject><subject>Classical Mechanics</subject><subject>Comparative analysis</subject><subject>Complex Systems</subject><subject>Computational fluid dynamics</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Fluid flow</subject><subject>Heat and Mass Transfer</subject><subject>Heat transfer</subject><subject>Holes</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical models</subject><subject>Studies</subject><subject>Thermodynamics</subject><subject>Turbulence</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><issn>1062-0125</issn><issn>1573-871X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhSMEEqXlB3CzxAFxSPHESRwfqxWFSpWQKJV6s5zseNeVYy-205Z_z6zCgSIhH2zPfM8av1dV74CfA-fyUwY-KKg58Jq3Da-7F9UJdFLUg4S7l3TmfUPdpntdvcn5nnOuhlacVPtNnA8muRwDi5aVPbKEefElH69z3KJ3YcemGB5wKu4B2R5NYSWZkC0m5gIrSxoXj6Ew6-NjZo-u7Bk-HTC5marGs60p5qx6ZY3P-PbPflrdXn7-sflaX3_7crW5uK6ntoFSjzCKDlDyaeybtkPRjGhEL3tocTB9NxihlJJ2sEq0XFGHq34g1SQEjFKJ0-rD-u4hxZ8L5qJnlyf03gSMS9YKFClBtkS-_4e8j0sKNJwGADG0nZScqPOV2hmP2gUb6e8TrS3OjmxB66h-IbpBkN9wFHx8JiCm4FPZmSVnfXXz_TkLKzulmHNCqw9kmkm_NHB9zFWvuWrKVR9z1R1pmlWTiQ07TH-N_V_RbyJzpA8</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Fomichev, A. I.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20101101</creationdate><title>Comparison of the results of modeling convective heat transfer in turbulent flows with experimental data</title><author>Fomichev, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-b1b351e70cb6245e32bea367614e8a658a39997f8f934093670968b1bc331b793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerodynamics</topic><topic>Classical Mechanics</topic><topic>Comparative analysis</topic><topic>Complex Systems</topic><topic>Computational fluid dynamics</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Fluid flow</topic><topic>Heat and Mass Transfer</topic><topic>Heat transfer</topic><topic>Holes</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical models</topic><topic>Studies</topic><topic>Thermodynamics</topic><topic>Turbulence</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fomichev, A. I.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of engineering physics and thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fomichev, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of the results of modeling convective heat transfer in turbulent flows with experimental data</atitle><jtitle>Journal of engineering physics and thermophysics</jtitle><stitle>J Eng Phys Thermophy</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>83</volume><issue>5</issue><spage>967</spage><epage>976</epage><pages>967-976</pages><issn>1062-0125</issn><eissn>1573-871X</eissn><abstract>The results of simulation of natural turbulent convection in a square air cavity measuring 0.75 × 0.75 m and having isothermal vertical and highly heat-conducting horizontal walls are compared with the experimental data obtained for this cavity at a Rayleigh number equal to 1.58⋅10 9 . In carrying out numerical investigations, a two-dimensional, low-turbulence, two-parameter k–ε model known as the low-Reynolds-number k–ε turbulence model was used. The results of investigations are presented for the distributions of the velocity and temperature components, as well as local and average values of the Nusselt number. The model was also used in calculating forced turbulent convection in a low-velocity channel with a backward facing step. The results of modeling are compared with experimental data on heat transfer in a turbulent separation flow downstream of the step. In both cases, a satisfactory agreement of the measured values with those predicted by the k–ε turbulence model is obtained.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10891-010-0420-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1062-0125
ispartof Journal of engineering physics and thermophysics, 2010-11, Vol.83 (5), p.967-976
issn 1062-0125
1573-871X
language eng
recordid cdi_proquest_miscellaneous_919934174
source SpringerLink Journals
subjects Aerodynamics
Classical Mechanics
Comparative analysis
Complex Systems
Computational fluid dynamics
Engineering
Engineering Thermodynamics
Fluid flow
Heat and Mass Transfer
Heat transfer
Holes
Industrial Chemistry/Chemical Engineering
Mathematical models
Studies
Thermodynamics
Turbulence
Turbulence models
Turbulent flow
title Comparison of the results of modeling convective heat transfer in turbulent flows with experimental data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20the%20results%20of%20modeling%20convective%20heat%20transfer%20in%20turbulent%20flows%20with%20experimental%20data&rft.jtitle=Journal%20of%20engineering%20physics%20and%20thermophysics&rft.au=Fomichev,%20A.%20I.&rft.date=2010-11-01&rft.volume=83&rft.issue=5&rft.spage=967&rft.epage=976&rft.pages=967-976&rft.issn=1062-0125&rft.eissn=1573-871X&rft_id=info:doi/10.1007/s10891-010-0420-5&rft_dat=%3Cgale_proqu%3EA358315710%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1113845770&rft_id=info:pmid/&rft_galeid=A358315710&rfr_iscdi=true