Developing a cyber-physical fluid dynamics facility for fluid–structure interaction studies
In fluid–structure interaction studies, such as vortex-induced vibration, one needs to select essential parameters for the system, such as mass, spring stiffness, and damping. Normally, these parameters are set physically by the mechanical arrangement. However, our approach utilizes a combination of...
Gespeichert in:
Veröffentlicht in: | Journal of fluids and structures 2011-07, Vol.27 (5), p.748-757 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 757 |
---|---|
container_issue | 5 |
container_start_page | 748 |
container_title | Journal of fluids and structures |
container_volume | 27 |
creator | Mackowski, Andrew W. Williamson, Charles H.K. |
description | In fluid–structure interaction studies, such as vortex-induced vibration, one needs to select essential parameters for the system, such as mass, spring stiffness, and damping. Normally, these parameters are set physically by the mechanical arrangement. However, our approach utilizes a combination of a
physical system, comprises a fluid and a mechanical actuator, and a
cyber system, taking the form of a computer-based force-feedback controller. This arrangement allows us to impose mass–spring–damping parameters in virtual space and in up to six degrees of freedom. [A similar concept, in one degree of freedom, was pioneered by a group at MIT (see
Hover et al., 1998), in studies of vortex-induced vibration of cables.] Although the use of a
cyber-physical system has clear advantages over using a purely physical experiment, there are serious challenges to overcome in the design of the governing control system. Our controller, based on a discretization of Newton's laws, makes it straightforward to add and modify any kind of nonlinear, time-varying, or directional force: it is virtually specified but imposed on a physical object. We implement this idea in both a first-generation and a second-generation facility. In this paper, we present preliminary applications of this approach in flow–structure interactions. |
doi_str_mv | 10.1016/j.jfluidstructs.2011.03.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919932417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0889974611000594</els_id><sourcerecordid>1642328463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-7f6e246373a6c442656c82bf26f03d30f906cb4b7e1a8e5ec825d3daf99f860e3</originalsourceid><addsrcrecordid>eNqNkM-K1TAUh4MoeB19h4KIblpP_jRtcCUz44ww4EaXEnLTE82lt73mpAPd-Q6-oU9ixg6CG3F1FufL73fyMfacQ8OB69eH5hDGJQ6U0-IzNQI4b0A2IOAB23Ewbd1rIR6yHfS9qU2n9GP2hOgAAEZJvmOfL_AWx_kUpy-Vq_y6x1Sfvq4UvRur39nVsE7uGD1Vwfk4xrxWYU7b7uf3H1v1krCKU8bkfI7zVFFehoj0lD0KbiR8dj_P2Kd3lx_Pr-ubD1fvz9_e1F4JkesuaBRKy0467ZUSutW-F_sgdAA5SAgGtN-rfYfc9dhiWbaDHFwwJvQaUJ6xl1vuKc3fFqRsj5E8jqObcF7IGm6MFIp3hXz1T5JrJaToyzEFfbOhPs1ECYM9pXh0abUc7J1-e7B_6bd3-i1IW_SX1y_uixwVlyG5yUf6EyHKN7tWqMJdbhwWP7cRkyUfcfI4xIQ-22GO_9X3Cz2Tpis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642328463</pqid></control><display><type>article</type><title>Developing a cyber-physical fluid dynamics facility for fluid–structure interaction studies</title><source>Elsevier ScienceDirect Journals</source><creator>Mackowski, Andrew W. ; Williamson, Charles H.K.</creator><creatorcontrib>Mackowski, Andrew W. ; Williamson, Charles H.K.</creatorcontrib><description>In fluid–structure interaction studies, such as vortex-induced vibration, one needs to select essential parameters for the system, such as mass, spring stiffness, and damping. Normally, these parameters are set physically by the mechanical arrangement. However, our approach utilizes a combination of a
physical system, comprises a fluid and a mechanical actuator, and a
cyber system, taking the form of a computer-based force-feedback controller. This arrangement allows us to impose mass–spring–damping parameters in virtual space and in up to six degrees of freedom. [A similar concept, in one degree of freedom, was pioneered by a group at MIT (see
Hover et al., 1998), in studies of vortex-induced vibration of cables.] Although the use of a
cyber-physical system has clear advantages over using a purely physical experiment, there are serious challenges to overcome in the design of the governing control system. Our controller, based on a discretization of Newton's laws, makes it straightforward to add and modify any kind of nonlinear, time-varying, or directional force: it is virtually specified but imposed on a physical object. We implement this idea in both a first-generation and a second-generation facility. In this paper, we present preliminary applications of this approach in flow–structure interactions.</description><identifier>ISSN: 0889-9746</identifier><identifier>EISSN: 1095-8622</identifier><identifier>DOI: 10.1016/j.jfluidstructs.2011.03.020</identifier><identifier>CODEN: JFSTEF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Computational fluid dynamics ; Computational methods in fluid dynamics ; Control systems ; Cyber-physical system ; Degrees of freedom ; Exact sciences and technology ; Flow-induced vibration ; Fluid dynamics ; Fluid flow ; Fluid-structure interaction ; Fluids ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; VIV ; Vortex-induced vibration ; Vortex-induced vibrations</subject><ispartof>Journal of fluids and structures, 2011-07, Vol.27 (5), p.748-757</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-7f6e246373a6c442656c82bf26f03d30f906cb4b7e1a8e5ec825d3daf99f860e3</citedby><cites>FETCH-LOGICAL-c422t-7f6e246373a6c442656c82bf26f03d30f906cb4b7e1a8e5ec825d3daf99f860e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0889974611000594$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24427524$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mackowski, Andrew W.</creatorcontrib><creatorcontrib>Williamson, Charles H.K.</creatorcontrib><title>Developing a cyber-physical fluid dynamics facility for fluid–structure interaction studies</title><title>Journal of fluids and structures</title><description>In fluid–structure interaction studies, such as vortex-induced vibration, one needs to select essential parameters for the system, such as mass, spring stiffness, and damping. Normally, these parameters are set physically by the mechanical arrangement. However, our approach utilizes a combination of a
physical system, comprises a fluid and a mechanical actuator, and a
cyber system, taking the form of a computer-based force-feedback controller. This arrangement allows us to impose mass–spring–damping parameters in virtual space and in up to six degrees of freedom. [A similar concept, in one degree of freedom, was pioneered by a group at MIT (see
Hover et al., 1998), in studies of vortex-induced vibration of cables.] Although the use of a
cyber-physical system has clear advantages over using a purely physical experiment, there are serious challenges to overcome in the design of the governing control system. Our controller, based on a discretization of Newton's laws, makes it straightforward to add and modify any kind of nonlinear, time-varying, or directional force: it is virtually specified but imposed on a physical object. We implement this idea in both a first-generation and a second-generation facility. In this paper, we present preliminary applications of this approach in flow–structure interactions.</description><subject>Computational fluid dynamics</subject><subject>Computational methods in fluid dynamics</subject><subject>Control systems</subject><subject>Cyber-physical system</subject><subject>Degrees of freedom</subject><subject>Exact sciences and technology</subject><subject>Flow-induced vibration</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>Fluids</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>VIV</subject><subject>Vortex-induced vibration</subject><subject>Vortex-induced vibrations</subject><issn>0889-9746</issn><issn>1095-8622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkM-K1TAUh4MoeB19h4KIblpP_jRtcCUz44ww4EaXEnLTE82lt73mpAPd-Q6-oU9ixg6CG3F1FufL73fyMfacQ8OB69eH5hDGJQ6U0-IzNQI4b0A2IOAB23Ewbd1rIR6yHfS9qU2n9GP2hOgAAEZJvmOfL_AWx_kUpy-Vq_y6x1Sfvq4UvRur39nVsE7uGD1Vwfk4xrxWYU7b7uf3H1v1krCKU8bkfI7zVFFehoj0lD0KbiR8dj_P2Kd3lx_Pr-ubD1fvz9_e1F4JkesuaBRKy0467ZUSutW-F_sgdAA5SAgGtN-rfYfc9dhiWbaDHFwwJvQaUJ6xl1vuKc3fFqRsj5E8jqObcF7IGm6MFIp3hXz1T5JrJaToyzEFfbOhPs1ECYM9pXh0abUc7J1-e7B_6bd3-i1IW_SX1y_uixwVlyG5yUf6EyHKN7tWqMJdbhwWP7cRkyUfcfI4xIQ-22GO_9X3Cz2Tpis</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Mackowski, Andrew W.</creator><creator>Williamson, Charles H.K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20110701</creationdate><title>Developing a cyber-physical fluid dynamics facility for fluid–structure interaction studies</title><author>Mackowski, Andrew W. ; Williamson, Charles H.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-7f6e246373a6c442656c82bf26f03d30f906cb4b7e1a8e5ec825d3daf99f860e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational fluid dynamics</topic><topic>Computational methods in fluid dynamics</topic><topic>Control systems</topic><topic>Cyber-physical system</topic><topic>Degrees of freedom</topic><topic>Exact sciences and technology</topic><topic>Flow-induced vibration</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>Fluids</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>VIV</topic><topic>Vortex-induced vibration</topic><topic>Vortex-induced vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mackowski, Andrew W.</creatorcontrib><creatorcontrib>Williamson, Charles H.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of fluids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mackowski, Andrew W.</au><au>Williamson, Charles H.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing a cyber-physical fluid dynamics facility for fluid–structure interaction studies</atitle><jtitle>Journal of fluids and structures</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>27</volume><issue>5</issue><spage>748</spage><epage>757</epage><pages>748-757</pages><issn>0889-9746</issn><eissn>1095-8622</eissn><coden>JFSTEF</coden><abstract>In fluid–structure interaction studies, such as vortex-induced vibration, one needs to select essential parameters for the system, such as mass, spring stiffness, and damping. Normally, these parameters are set physically by the mechanical arrangement. However, our approach utilizes a combination of a
physical system, comprises a fluid and a mechanical actuator, and a
cyber system, taking the form of a computer-based force-feedback controller. This arrangement allows us to impose mass–spring–damping parameters in virtual space and in up to six degrees of freedom. [A similar concept, in one degree of freedom, was pioneered by a group at MIT (see
Hover et al., 1998), in studies of vortex-induced vibration of cables.] Although the use of a
cyber-physical system has clear advantages over using a purely physical experiment, there are serious challenges to overcome in the design of the governing control system. Our controller, based on a discretization of Newton's laws, makes it straightforward to add and modify any kind of nonlinear, time-varying, or directional force: it is virtually specified but imposed on a physical object. We implement this idea in both a first-generation and a second-generation facility. In this paper, we present preliminary applications of this approach in flow–structure interactions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfluidstructs.2011.03.020</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0889-9746 |
ispartof | Journal of fluids and structures, 2011-07, Vol.27 (5), p.748-757 |
issn | 0889-9746 1095-8622 |
language | eng |
recordid | cdi_proquest_miscellaneous_919932417 |
source | Elsevier ScienceDirect Journals |
subjects | Computational fluid dynamics Computational methods in fluid dynamics Control systems Cyber-physical system Degrees of freedom Exact sciences and technology Flow-induced vibration Fluid dynamics Fluid flow Fluid-structure interaction Fluids Fundamental areas of phenomenology (including applications) Mathematical analysis Physics Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) VIV Vortex-induced vibration Vortex-induced vibrations |
title | Developing a cyber-physical fluid dynamics facility for fluid–structure interaction studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A30%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20a%20cyber-physical%20fluid%20dynamics%20facility%20for%20fluid%E2%80%93structure%20interaction%20studies&rft.jtitle=Journal%20of%20fluids%20and%20structures&rft.au=Mackowski,%20Andrew%20W.&rft.date=2011-07-01&rft.volume=27&rft.issue=5&rft.spage=748&rft.epage=757&rft.pages=748-757&rft.issn=0889-9746&rft.eissn=1095-8622&rft.coden=JFSTEF&rft_id=info:doi/10.1016/j.jfluidstructs.2011.03.020&rft_dat=%3Cproquest_cross%3E1642328463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642328463&rft_id=info:pmid/&rft_els_id=S0889974611000594&rfr_iscdi=true |