Myriapod-like ambulation of a segmented microrobot

Segmented myriapod-like bodies may offer performance benefits over more common fixed body morphologies for ambulation. Here, the design of a segmented ambulatory microrobot with a flexible backbone is presented. A dynamic model describing the motion of the microrobot is used to determine body parame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autonomous robots 2011-07, Vol.31 (1), p.103-114
Hauptverfasser: Hoffman, Katie L., Wood, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue 1
container_start_page 103
container_title Autonomous robots
container_volume 31
creator Hoffman, Katie L.
Wood, Robert J.
description Segmented myriapod-like bodies may offer performance benefits over more common fixed body morphologies for ambulation. Here, the design of a segmented ambulatory microrobot with a flexible backbone is presented. A dynamic model describing the motion of the microrobot is used to determine body parameters. A three-segment microrobot was fabricated using the Smart Composite Microstructures process and piezoelectric bimorph actuators, and forward locomotion on a flat surface was demonstrated. The footprint of the 750 mg microrobot is 3.5 by 3.5 cm, and it has potential advantages over rigid body hexapedal microrobots in climbing, versatility, and stability.
doi_str_mv 10.1007/s10514-011-9233-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919929687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2361199921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-36e6de0693bc6a6bd87bf280720edbd0210b923181f2beec56ea1843e6f5fc53</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-AHfFjavoS9IkzVIGv2DEzexD2r4OHdtmTNrF_HszVBAEcfU2517ePYRcM7hjAPo-MpAsp8AYNVwImp-QBZNaUC25PiULMNxQKY04Jxcx7gDAaIAF4W-H0Lq9r2nXfmDm-nLq3Nj6IfNN5rKI2x6HEeusb6vggy_9eEnOGtdFvPq-S7J5etysXuj6_fl19bCmldBmpEKhqhGUEWWlnCrrQpcNL0BzwLqsgTMo06usYA0vESup0LEiF6ga2VRSLMntXLsP_nPCONq-jRV2nRvQT9EaZtImVej_SdBGc6NVIm9-kTs_hSGtsIUy6ddcHCE2Q2lwjAEbuw9t78LBMrBH2XaWbZNse5Rt85ThcyYmdthi-Cn-O_QFeRaAdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869069436</pqid></control><display><type>article</type><title>Myriapod-like ambulation of a segmented microrobot</title><source>SpringerLink Journals</source><creator>Hoffman, Katie L. ; Wood, Robert J.</creator><creatorcontrib>Hoffman, Katie L. ; Wood, Robert J.</creatorcontrib><description>Segmented myriapod-like bodies may offer performance benefits over more common fixed body morphologies for ambulation. Here, the design of a segmented ambulatory microrobot with a flexible backbone is presented. A dynamic model describing the motion of the microrobot is used to determine body parameters. A three-segment microrobot was fabricated using the Smart Composite Microstructures process and piezoelectric bimorph actuators, and forward locomotion on a flat surface was demonstrated. The footprint of the 750 mg microrobot is 3.5 by 3.5 cm, and it has potential advantages over rigid body hexapedal microrobots in climbing, versatility, and stability.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-011-9233-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Actuators ; Artificial Intelligence ; Bimorphs ; Computer Imaging ; Control ; Dynamic models ; Engineering ; Flat surfaces ; Footprints ; Locomotion ; Mathematical models ; Mechatronics ; Microrobots ; Morphology ; Pattern Recognition and Graphics ; Piezoelectricity ; Rigid structures ; Rigid-body dynamics ; Robotics ; Robotics and Automation ; Robots ; Vision</subject><ispartof>Autonomous robots, 2011-07, Vol.31 (1), p.103-114</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Autonomous Robots is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-36e6de0693bc6a6bd87bf280720edbd0210b923181f2beec56ea1843e6f5fc53</citedby><cites>FETCH-LOGICAL-c379t-36e6de0693bc6a6bd87bf280720edbd0210b923181f2beec56ea1843e6f5fc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10514-011-9233-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10514-011-9233-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hoffman, Katie L.</creatorcontrib><creatorcontrib>Wood, Robert J.</creatorcontrib><title>Myriapod-like ambulation of a segmented microrobot</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>Segmented myriapod-like bodies may offer performance benefits over more common fixed body morphologies for ambulation. Here, the design of a segmented ambulatory microrobot with a flexible backbone is presented. A dynamic model describing the motion of the microrobot is used to determine body parameters. A three-segment microrobot was fabricated using the Smart Composite Microstructures process and piezoelectric bimorph actuators, and forward locomotion on a flat surface was demonstrated. The footprint of the 750 mg microrobot is 3.5 by 3.5 cm, and it has potential advantages over rigid body hexapedal microrobots in climbing, versatility, and stability.</description><subject>Actuators</subject><subject>Artificial Intelligence</subject><subject>Bimorphs</subject><subject>Computer Imaging</subject><subject>Control</subject><subject>Dynamic models</subject><subject>Engineering</subject><subject>Flat surfaces</subject><subject>Footprints</subject><subject>Locomotion</subject><subject>Mathematical models</subject><subject>Mechatronics</subject><subject>Microrobots</subject><subject>Morphology</subject><subject>Pattern Recognition and Graphics</subject><subject>Piezoelectricity</subject><subject>Rigid structures</subject><subject>Rigid-body dynamics</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>Vision</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkE1LxDAURYMoOI7-AHfFjavoS9IkzVIGv2DEzexD2r4OHdtmTNrF_HszVBAEcfU2517ePYRcM7hjAPo-MpAsp8AYNVwImp-QBZNaUC25PiULMNxQKY04Jxcx7gDAaIAF4W-H0Lq9r2nXfmDm-nLq3Nj6IfNN5rKI2x6HEeusb6vggy_9eEnOGtdFvPq-S7J5etysXuj6_fl19bCmldBmpEKhqhGUEWWlnCrrQpcNL0BzwLqsgTMo06usYA0vESup0LEiF6ga2VRSLMntXLsP_nPCONq-jRV2nRvQT9EaZtImVej_SdBGc6NVIm9-kTs_hSGtsIUy6ddcHCE2Q2lwjAEbuw9t78LBMrBH2XaWbZNse5Rt85ThcyYmdthi-Cn-O_QFeRaAdg</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Hoffman, Katie L.</creator><creator>Wood, Robert J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>20110701</creationdate><title>Myriapod-like ambulation of a segmented microrobot</title><author>Hoffman, Katie L. ; Wood, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-36e6de0693bc6a6bd87bf280720edbd0210b923181f2beec56ea1843e6f5fc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Actuators</topic><topic>Artificial Intelligence</topic><topic>Bimorphs</topic><topic>Computer Imaging</topic><topic>Control</topic><topic>Dynamic models</topic><topic>Engineering</topic><topic>Flat surfaces</topic><topic>Footprints</topic><topic>Locomotion</topic><topic>Mathematical models</topic><topic>Mechatronics</topic><topic>Microrobots</topic><topic>Morphology</topic><topic>Pattern Recognition and Graphics</topic><topic>Piezoelectricity</topic><topic>Rigid structures</topic><topic>Rigid-body dynamics</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffman, Katie L.</creatorcontrib><creatorcontrib>Wood, Robert J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffman, Katie L.</au><au>Wood, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myriapod-like ambulation of a segmented microrobot</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>31</volume><issue>1</issue><spage>103</spage><epage>114</epage><pages>103-114</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>Segmented myriapod-like bodies may offer performance benefits over more common fixed body morphologies for ambulation. Here, the design of a segmented ambulatory microrobot with a flexible backbone is presented. A dynamic model describing the motion of the microrobot is used to determine body parameters. A three-segment microrobot was fabricated using the Smart Composite Microstructures process and piezoelectric bimorph actuators, and forward locomotion on a flat surface was demonstrated. The footprint of the 750 mg microrobot is 3.5 by 3.5 cm, and it has potential advantages over rigid body hexapedal microrobots in climbing, versatility, and stability.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10514-011-9233-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0929-5593
ispartof Autonomous robots, 2011-07, Vol.31 (1), p.103-114
issn 0929-5593
1573-7527
language eng
recordid cdi_proquest_miscellaneous_919929687
source SpringerLink Journals
subjects Actuators
Artificial Intelligence
Bimorphs
Computer Imaging
Control
Dynamic models
Engineering
Flat surfaces
Footprints
Locomotion
Mathematical models
Mechatronics
Microrobots
Morphology
Pattern Recognition and Graphics
Piezoelectricity
Rigid structures
Rigid-body dynamics
Robotics
Robotics and Automation
Robots
Vision
title Myriapod-like ambulation of a segmented microrobot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myriapod-like%20ambulation%20of%20a%20segmented%20microrobot&rft.jtitle=Autonomous%20robots&rft.au=Hoffman,%20Katie%20L.&rft.date=2011-07-01&rft.volume=31&rft.issue=1&rft.spage=103&rft.epage=114&rft.pages=103-114&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-011-9233-4&rft_dat=%3Cproquest_cross%3E2361199921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869069436&rft_id=info:pmid/&rfr_iscdi=true