Myriapod-like ambulation of a segmented microrobot
Segmented myriapod-like bodies may offer performance benefits over more common fixed body morphologies for ambulation. Here, the design of a segmented ambulatory microrobot with a flexible backbone is presented. A dynamic model describing the motion of the microrobot is used to determine body parame...
Gespeichert in:
Veröffentlicht in: | Autonomous robots 2011-07, Vol.31 (1), p.103-114 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | 1 |
container_start_page | 103 |
container_title | Autonomous robots |
container_volume | 31 |
creator | Hoffman, Katie L. Wood, Robert J. |
description | Segmented myriapod-like bodies may offer performance benefits over more common fixed body morphologies for ambulation. Here, the design of a segmented ambulatory microrobot with a flexible backbone is presented. A dynamic model describing the motion of the microrobot is used to determine body parameters. A three-segment microrobot was fabricated using the Smart Composite Microstructures process and piezoelectric bimorph actuators, and forward locomotion on a flat surface was demonstrated. The footprint of the 750 mg microrobot is 3.5 by 3.5 cm, and it has potential advantages over rigid body hexapedal microrobots in climbing, versatility, and stability. |
doi_str_mv | 10.1007/s10514-011-9233-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919929687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2361199921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-36e6de0693bc6a6bd87bf280720edbd0210b923181f2beec56ea1843e6f5fc53</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-AHfFjavoS9IkzVIGv2DEzexD2r4OHdtmTNrF_HszVBAEcfU2517ePYRcM7hjAPo-MpAsp8AYNVwImp-QBZNaUC25PiULMNxQKY04Jxcx7gDAaIAF4W-H0Lq9r2nXfmDm-nLq3Nj6IfNN5rKI2x6HEeusb6vggy_9eEnOGtdFvPq-S7J5etysXuj6_fl19bCmldBmpEKhqhGUEWWlnCrrQpcNL0BzwLqsgTMo06usYA0vESup0LEiF6ga2VRSLMntXLsP_nPCONq-jRV2nRvQT9EaZtImVej_SdBGc6NVIm9-kTs_hSGtsIUy6ddcHCE2Q2lwjAEbuw9t78LBMrBH2XaWbZNse5Rt85ThcyYmdthi-Cn-O_QFeRaAdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869069436</pqid></control><display><type>article</type><title>Myriapod-like ambulation of a segmented microrobot</title><source>SpringerLink Journals</source><creator>Hoffman, Katie L. ; Wood, Robert J.</creator><creatorcontrib>Hoffman, Katie L. ; Wood, Robert J.</creatorcontrib><description>Segmented myriapod-like bodies may offer performance benefits over more common fixed body morphologies for ambulation. Here, the design of a segmented ambulatory microrobot with a flexible backbone is presented. A dynamic model describing the motion of the microrobot is used to determine body parameters. A three-segment microrobot was fabricated using the Smart Composite Microstructures process and piezoelectric bimorph actuators, and forward locomotion on a flat surface was demonstrated. The footprint of the 750 mg microrobot is 3.5 by 3.5 cm, and it has potential advantages over rigid body hexapedal microrobots in climbing, versatility, and stability.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-011-9233-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Actuators ; Artificial Intelligence ; Bimorphs ; Computer Imaging ; Control ; Dynamic models ; Engineering ; Flat surfaces ; Footprints ; Locomotion ; Mathematical models ; Mechatronics ; Microrobots ; Morphology ; Pattern Recognition and Graphics ; Piezoelectricity ; Rigid structures ; Rigid-body dynamics ; Robotics ; Robotics and Automation ; Robots ; Vision</subject><ispartof>Autonomous robots, 2011-07, Vol.31 (1), p.103-114</ispartof><rights>Springer Science+Business Media, LLC 2011</rights><rights>Autonomous Robots is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-36e6de0693bc6a6bd87bf280720edbd0210b923181f2beec56ea1843e6f5fc53</citedby><cites>FETCH-LOGICAL-c379t-36e6de0693bc6a6bd87bf280720edbd0210b923181f2beec56ea1843e6f5fc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10514-011-9233-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10514-011-9233-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hoffman, Katie L.</creatorcontrib><creatorcontrib>Wood, Robert J.</creatorcontrib><title>Myriapod-like ambulation of a segmented microrobot</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>Segmented myriapod-like bodies may offer performance benefits over more common fixed body morphologies for ambulation. Here, the design of a segmented ambulatory microrobot with a flexible backbone is presented. A dynamic model describing the motion of the microrobot is used to determine body parameters. A three-segment microrobot was fabricated using the Smart Composite Microstructures process and piezoelectric bimorph actuators, and forward locomotion on a flat surface was demonstrated. The footprint of the 750 mg microrobot is 3.5 by 3.5 cm, and it has potential advantages over rigid body hexapedal microrobots in climbing, versatility, and stability.</description><subject>Actuators</subject><subject>Artificial Intelligence</subject><subject>Bimorphs</subject><subject>Computer Imaging</subject><subject>Control</subject><subject>Dynamic models</subject><subject>Engineering</subject><subject>Flat surfaces</subject><subject>Footprints</subject><subject>Locomotion</subject><subject>Mathematical models</subject><subject>Mechatronics</subject><subject>Microrobots</subject><subject>Morphology</subject><subject>Pattern Recognition and Graphics</subject><subject>Piezoelectricity</subject><subject>Rigid structures</subject><subject>Rigid-body dynamics</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>Vision</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkE1LxDAURYMoOI7-AHfFjavoS9IkzVIGv2DEzexD2r4OHdtmTNrF_HszVBAEcfU2517ePYRcM7hjAPo-MpAsp8AYNVwImp-QBZNaUC25PiULMNxQKY04Jxcx7gDAaIAF4W-H0Lq9r2nXfmDm-nLq3Nj6IfNN5rKI2x6HEeusb6vggy_9eEnOGtdFvPq-S7J5etysXuj6_fl19bCmldBmpEKhqhGUEWWlnCrrQpcNL0BzwLqsgTMo06usYA0vESup0LEiF6ga2VRSLMntXLsP_nPCONq-jRV2nRvQT9EaZtImVej_SdBGc6NVIm9-kTs_hSGtsIUy6ddcHCE2Q2lwjAEbuw9t78LBMrBH2XaWbZNse5Rt85ThcyYmdthi-Cn-O_QFeRaAdg</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Hoffman, Katie L.</creator><creator>Wood, Robert J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope></search><sort><creationdate>20110701</creationdate><title>Myriapod-like ambulation of a segmented microrobot</title><author>Hoffman, Katie L. ; Wood, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-36e6de0693bc6a6bd87bf280720edbd0210b923181f2beec56ea1843e6f5fc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Actuators</topic><topic>Artificial Intelligence</topic><topic>Bimorphs</topic><topic>Computer Imaging</topic><topic>Control</topic><topic>Dynamic models</topic><topic>Engineering</topic><topic>Flat surfaces</topic><topic>Footprints</topic><topic>Locomotion</topic><topic>Mathematical models</topic><topic>Mechatronics</topic><topic>Microrobots</topic><topic>Morphology</topic><topic>Pattern Recognition and Graphics</topic><topic>Piezoelectricity</topic><topic>Rigid structures</topic><topic>Rigid-body dynamics</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffman, Katie L.</creatorcontrib><creatorcontrib>Wood, Robert J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffman, Katie L.</au><au>Wood, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myriapod-like ambulation of a segmented microrobot</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>31</volume><issue>1</issue><spage>103</spage><epage>114</epage><pages>103-114</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>Segmented myriapod-like bodies may offer performance benefits over more common fixed body morphologies for ambulation. Here, the design of a segmented ambulatory microrobot with a flexible backbone is presented. A dynamic model describing the motion of the microrobot is used to determine body parameters. A three-segment microrobot was fabricated using the Smart Composite Microstructures process and piezoelectric bimorph actuators, and forward locomotion on a flat surface was demonstrated. The footprint of the 750 mg microrobot is 3.5 by 3.5 cm, and it has potential advantages over rigid body hexapedal microrobots in climbing, versatility, and stability.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10514-011-9233-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5593 |
ispartof | Autonomous robots, 2011-07, Vol.31 (1), p.103-114 |
issn | 0929-5593 1573-7527 |
language | eng |
recordid | cdi_proquest_miscellaneous_919929687 |
source | SpringerLink Journals |
subjects | Actuators Artificial Intelligence Bimorphs Computer Imaging Control Dynamic models Engineering Flat surfaces Footprints Locomotion Mathematical models Mechatronics Microrobots Morphology Pattern Recognition and Graphics Piezoelectricity Rigid structures Rigid-body dynamics Robotics Robotics and Automation Robots Vision |
title | Myriapod-like ambulation of a segmented microrobot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myriapod-like%20ambulation%20of%20a%20segmented%20microrobot&rft.jtitle=Autonomous%20robots&rft.au=Hoffman,%20Katie%20L.&rft.date=2011-07-01&rft.volume=31&rft.issue=1&rft.spage=103&rft.epage=114&rft.pages=103-114&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-011-9233-4&rft_dat=%3Cproquest_cross%3E2361199921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869069436&rft_id=info:pmid/&rfr_iscdi=true |