Turbulence and cavitation models for time-dependent turbulent cavitating flows

Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state, and the flow is frequently unsteady and turbulent. To assess the state-of-the-art of computational capabilities for unsteady cavitating flows, different cavitation and turbulence mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica Sinica 2011-08, Vol.27 (4), p.473-487
Hauptverfasser: Wei, Ying-Jie, Tseng, Chien-Chou, Wang, Guo-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 487
container_issue 4
container_start_page 473
container_title Acta mechanica Sinica
container_volume 27
creator Wei, Ying-Jie
Tseng, Chien-Chou
Wang, Guo-Yu
description Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state, and the flow is frequently unsteady and turbulent. To assess the state-of-the-art of computational capabilities for unsteady cavitating flows, different cavitation and turbulence model combinations are conducted. The selected cavitation models include several widely-used models including one based on phenomenological argument and the other utilizing interface dynamics. The k-e turbulence model with additional implementation of the filter function and density correction function are considered to reduce the eddy viscosity according to the computed turbulence length scale and local fluid density respectively. We have also blended these alternative cavitation and lustrate that the eddy viscosity turbulence treatments, to ilnear the closure region can significantly influence the capture of detached cavity. From the experimental validations regarding the force analysis, frequency, and the cavity visualization, no single model combination performs best in all aspects. Furthermore, the implications of parameters contained in different cavitation models are investigated. The phase change process is more pronounced around the detached cavity, which is better illustrated by the interfacial dynamics model. Our study provides insight to aid further modeling development.
doi_str_mv 10.1007/s10409-011-0475-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919929114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>38857651</cqvip_id><sourcerecordid>919929114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-e35730cc6f91fdb3ef3b20f15ac6bc8d95d99c123a6b052907c58f2e339f1aa23</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwA9jCxGTwxbEdj6jiS0KwlNlyHLukSu3WdkD8e1Kl6sh0y3t3uofQNZA7IETcJyAVkZgAYFIJhukJmgGHClMAfopmhHGBhYD6HF2ktCaEchAwQ-_LITZDb72xhfZtYfR3l3Xugi82obV9KlyIRe42Frd2a31rfS7ywclH3K8K14efdInOnO6TvTrMOfp8elwuXvDbx_Pr4uENG1rxjC1lghJjuJPg2oZaR5uSOGDa8MbUrWStlAZKqnlDWCmJMKx2paVUOtC6pHN0O-3dxrAbbMpq0yVj-157G4akJEhZSoBqJGEiTQwpRevUNnYbHX8VELVPp6Z0akyn9ukUHZ1yctLI-pWNah2G6MeH_pVuDoe-gl_tRu94idY1E5wB_QP6b32q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919929114</pqid></control><display><type>article</type><title>Turbulence and cavitation models for time-dependent turbulent cavitating flows</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wei, Ying-Jie ; Tseng, Chien-Chou ; Wang, Guo-Yu</creator><creatorcontrib>Wei, Ying-Jie ; Tseng, Chien-Chou ; Wang, Guo-Yu</creatorcontrib><description>Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state, and the flow is frequently unsteady and turbulent. To assess the state-of-the-art of computational capabilities for unsteady cavitating flows, different cavitation and turbulence model combinations are conducted. The selected cavitation models include several widely-used models including one based on phenomenological argument and the other utilizing interface dynamics. The k-e turbulence model with additional implementation of the filter function and density correction function are considered to reduce the eddy viscosity according to the computed turbulence length scale and local fluid density respectively. We have also blended these alternative cavitation and lustrate that the eddy viscosity turbulence treatments, to ilnear the closure region can significantly influence the capture of detached cavity. From the experimental validations regarding the force analysis, frequency, and the cavity visualization, no single model combination performs best in all aspects. Furthermore, the implications of parameters contained in different cavitation models are investigated. The phase change process is more pronounced around the detached cavity, which is better illustrated by the interfacial dynamics model. Our study provides insight to aid further modeling development.</description><identifier>ISSN: 0567-7718</identifier><identifier>EISSN: 1614-3116</identifier><identifier>DOI: 10.1007/s10409-011-0475-3</identifier><language>eng</language><publisher>Heidelberg: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</publisher><subject>Cavitation ; Classical and Continuum Physics ; Computational fluid dynamics ; Computational Intelligence ; Engineering ; Engineering Fluid Dynamics ; Fluid flow ; Holes ; Mathematical models ; Research Paper ; Theoretical and Applied Mechanics ; Turbulence ; Turbulent flow ; Unsteady ; 动力学模型 ; 时间依赖 ; 流动 ; 湍流尺度 ; 热力学状态 ; 空化模型 ; 空泡 ; 计算能力</subject><ispartof>Acta mechanica Sinica, 2011-08, Vol.27 (4), p.473-487</ispartof><rights>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-e35730cc6f91fdb3ef3b20f15ac6bc8d95d99c123a6b052907c58f2e339f1aa23</citedby><cites>FETCH-LOGICAL-c346t-e35730cc6f91fdb3ef3b20f15ac6bc8d95d99c123a6b052907c58f2e339f1aa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86601X/86601X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10409-011-0475-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10409-011-0475-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Wei, Ying-Jie</creatorcontrib><creatorcontrib>Tseng, Chien-Chou</creatorcontrib><creatorcontrib>Wang, Guo-Yu</creatorcontrib><title>Turbulence and cavitation models for time-dependent turbulent cavitating flows</title><title>Acta mechanica Sinica</title><addtitle>Acta Mech Sin</addtitle><addtitle>Acta Mechanica Sinica</addtitle><description>Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state, and the flow is frequently unsteady and turbulent. To assess the state-of-the-art of computational capabilities for unsteady cavitating flows, different cavitation and turbulence model combinations are conducted. The selected cavitation models include several widely-used models including one based on phenomenological argument and the other utilizing interface dynamics. The k-e turbulence model with additional implementation of the filter function and density correction function are considered to reduce the eddy viscosity according to the computed turbulence length scale and local fluid density respectively. We have also blended these alternative cavitation and lustrate that the eddy viscosity turbulence treatments, to ilnear the closure region can significantly influence the capture of detached cavity. From the experimental validations regarding the force analysis, frequency, and the cavity visualization, no single model combination performs best in all aspects. Furthermore, the implications of parameters contained in different cavitation models are investigated. The phase change process is more pronounced around the detached cavity, which is better illustrated by the interfacial dynamics model. Our study provides insight to aid further modeling development.</description><subject>Cavitation</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Computational Intelligence</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid flow</subject><subject>Holes</subject><subject>Mathematical models</subject><subject>Research Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Unsteady</subject><subject>动力学模型</subject><subject>时间依赖</subject><subject>流动</subject><subject>湍流尺度</subject><subject>热力学状态</subject><subject>空化模型</subject><subject>空泡</subject><subject>计算能力</subject><issn>0567-7718</issn><issn>1614-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwA9jCxGTwxbEdj6jiS0KwlNlyHLukSu3WdkD8e1Kl6sh0y3t3uofQNZA7IETcJyAVkZgAYFIJhukJmgGHClMAfopmhHGBhYD6HF2ktCaEchAwQ-_LITZDb72xhfZtYfR3l3Xugi82obV9KlyIRe42Frd2a31rfS7ywclH3K8K14efdInOnO6TvTrMOfp8elwuXvDbx_Pr4uENG1rxjC1lghJjuJPg2oZaR5uSOGDa8MbUrWStlAZKqnlDWCmJMKx2paVUOtC6pHN0O-3dxrAbbMpq0yVj-157G4akJEhZSoBqJGEiTQwpRevUNnYbHX8VELVPp6Z0akyn9ukUHZ1yctLI-pWNah2G6MeH_pVuDoe-gl_tRu94idY1E5wB_QP6b32q</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Wei, Ying-Jie</creator><creator>Tseng, Chien-Chou</creator><creator>Wang, Guo-Yu</creator><general>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20110801</creationdate><title>Turbulence and cavitation models for time-dependent turbulent cavitating flows</title><author>Wei, Ying-Jie ; Tseng, Chien-Chou ; Wang, Guo-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-e35730cc6f91fdb3ef3b20f15ac6bc8d95d99c123a6b052907c58f2e339f1aa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cavitation</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Computational Intelligence</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid flow</topic><topic>Holes</topic><topic>Mathematical models</topic><topic>Research Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Unsteady</topic><topic>动力学模型</topic><topic>时间依赖</topic><topic>流动</topic><topic>湍流尺度</topic><topic>热力学状态</topic><topic>空化模型</topic><topic>空泡</topic><topic>计算能力</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Ying-Jie</creatorcontrib><creatorcontrib>Tseng, Chien-Chou</creatorcontrib><creatorcontrib>Wang, Guo-Yu</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Acta mechanica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Ying-Jie</au><au>Tseng, Chien-Chou</au><au>Wang, Guo-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulence and cavitation models for time-dependent turbulent cavitating flows</atitle><jtitle>Acta mechanica Sinica</jtitle><stitle>Acta Mech Sin</stitle><addtitle>Acta Mechanica Sinica</addtitle><date>2011-08-01</date><risdate>2011</risdate><volume>27</volume><issue>4</issue><spage>473</spage><epage>487</epage><pages>473-487</pages><issn>0567-7718</issn><eissn>1614-3116</eissn><abstract>Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state, and the flow is frequently unsteady and turbulent. To assess the state-of-the-art of computational capabilities for unsteady cavitating flows, different cavitation and turbulence model combinations are conducted. The selected cavitation models include several widely-used models including one based on phenomenological argument and the other utilizing interface dynamics. The k-e turbulence model with additional implementation of the filter function and density correction function are considered to reduce the eddy viscosity according to the computed turbulence length scale and local fluid density respectively. We have also blended these alternative cavitation and lustrate that the eddy viscosity turbulence treatments, to ilnear the closure region can significantly influence the capture of detached cavity. From the experimental validations regarding the force analysis, frequency, and the cavity visualization, no single model combination performs best in all aspects. Furthermore, the implications of parameters contained in different cavitation models are investigated. The phase change process is more pronounced around the detached cavity, which is better illustrated by the interfacial dynamics model. Our study provides insight to aid further modeling development.</abstract><cop>Heidelberg</cop><pub>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</pub><doi>10.1007/s10409-011-0475-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0567-7718
ispartof Acta mechanica Sinica, 2011-08, Vol.27 (4), p.473-487
issn 0567-7718
1614-3116
language eng
recordid cdi_proquest_miscellaneous_919929114
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Cavitation
Classical and Continuum Physics
Computational fluid dynamics
Computational Intelligence
Engineering
Engineering Fluid Dynamics
Fluid flow
Holes
Mathematical models
Research Paper
Theoretical and Applied Mechanics
Turbulence
Turbulent flow
Unsteady
动力学模型
时间依赖
流动
湍流尺度
热力学状态
空化模型
空泡
计算能力
title Turbulence and cavitation models for time-dependent turbulent cavitating flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulence%20and%20cavitation%20models%20for%20time-dependent%20turbulent%20cavitating%20flows&rft.jtitle=Acta%20mechanica%20Sinica&rft.au=Wei,%20Ying-Jie&rft.date=2011-08-01&rft.volume=27&rft.issue=4&rft.spage=473&rft.epage=487&rft.pages=473-487&rft.issn=0567-7718&rft.eissn=1614-3116&rft_id=info:doi/10.1007/s10409-011-0475-3&rft_dat=%3Cproquest_cross%3E919929114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919929114&rft_id=info:pmid/&rft_cqvip_id=38857651&rfr_iscdi=true