On Harary index of graphs
The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. For a connected graph G=(V,E) and two nonadjacent vertices v sub(i and v) sub(j) in V(G) of G, recall that G+v sub(iv) sub(j) is the supergraph formed from G by adding an edge betwe...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2011-09, Vol.159 (15), p.1631-1640 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1640 |
---|---|
container_issue | 15 |
container_start_page | 1631 |
container_title | Discrete Applied Mathematics |
container_volume | 159 |
creator | KEXIANG XU DAS, Kinkar Ch |
description | The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. For a connected graph G=(V,E) and two nonadjacent vertices v sub(i and v) sub(j) in V(G) of G, recall that G+v sub(iv) sub(j) is the supergraph formed from G by adding an edge between vertices v sub(i and v) sub(j). Denote the Harary index of G and G+v sub(iv) sub(j) by H(G) and H(G+v sub(iv) sub(j)), respectively. We obtain lower and upper bounds on H(G+v sub(iv) sub(j))-H(G), and characterize the equality cases in those bounds. Finally, in this paper, we present some lower and upper bounds on the Harary index of graphs with different parameters, such as clique number and chromatic number, and characterize the extremal graphs at which the lower or upper bounds on the Harary index are attained. |
doi_str_mv | 10.1016/j.dam.2011.06.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919928892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919928892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-271a2c4053d34f6c4c0fd2a48841c99643db7fd440356e3622fa25e4cc3df0623</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_oLvZiKsZ773JZDJLKWqFQjcK7kLMQ6fMy6QF_fdOaXF1OfCdw-VjbIFQIKC83xbOdAUBYgGyAOBnbIaqolxWFZ6z2cTInFC9X7KrlLYAgFOascWmz1YmmvibNb3zP9kQss9oxq90zS6CaZO_Od05e3t6fF2u8vXm-WX5sM4tL2GXU4WGrICSOy6CtMJCcGSEUgJtXUvB3UcVnBDAS-m5JAqGSi-s5S6AJD5nd8fdMQ7fe592umuS9W1rej_sk66xrkmp-kDikbRxSCn6oMfYdNPrGkEfLOitnizogwUNUk8Wps7tad0ka9oQTW-b9F8kITiVivM_UI5a9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919928892</pqid></control><display><type>article</type><title>On Harary index of graphs</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>KEXIANG XU ; DAS, Kinkar Ch</creator><creatorcontrib>KEXIANG XU ; DAS, Kinkar Ch</creatorcontrib><description>The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. For a connected graph G=(V,E) and two nonadjacent vertices v sub(i and v) sub(j) in V(G) of G, recall that G+v sub(iv) sub(j) is the supergraph formed from G by adding an edge between vertices v sub(i and v) sub(j). Denote the Harary index of G and G+v sub(iv) sub(j) by H(G) and H(G+v sub(iv) sub(j)), respectively. We obtain lower and upper bounds on H(G+v sub(iv) sub(j))-H(G), and characterize the equality cases in those bounds. Finally, in this paper, we present some lower and upper bounds on the Harary index of graphs with different parameters, such as clique number and chromatic number, and characterize the extremal graphs at which the lower or upper bounds on the Harary index are attained.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2011.06.003</identifier><identifier>CODEN: DAMADU</identifier><language>eng</language><publisher>Kidlington: Elsevier</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; Graphs ; Information retrieval. Graph ; Mathematical analysis ; Mathematics ; Recall ; Sciences and techniques of general use ; Theoretical computing ; Upper bounds</subject><ispartof>Discrete Applied Mathematics, 2011-09, Vol.159 (15), p.1631-1640</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-271a2c4053d34f6c4c0fd2a48841c99643db7fd440356e3622fa25e4cc3df0623</citedby><cites>FETCH-LOGICAL-c350t-271a2c4053d34f6c4c0fd2a48841c99643db7fd440356e3622fa25e4cc3df0623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24432583$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KEXIANG XU</creatorcontrib><creatorcontrib>DAS, Kinkar Ch</creatorcontrib><title>On Harary index of graphs</title><title>Discrete Applied Mathematics</title><description>The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. For a connected graph G=(V,E) and two nonadjacent vertices v sub(i and v) sub(j) in V(G) of G, recall that G+v sub(iv) sub(j) is the supergraph formed from G by adding an edge between vertices v sub(i and v) sub(j). Denote the Harary index of G and G+v sub(iv) sub(j) by H(G) and H(G+v sub(iv) sub(j)), respectively. We obtain lower and upper bounds on H(G+v sub(iv) sub(j))-H(G), and characterize the equality cases in those bounds. Finally, in this paper, we present some lower and upper bounds on the Harary index of graphs with different parameters, such as clique number and chromatic number, and characterize the extremal graphs at which the lower or upper bounds on the Harary index are attained.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graphs</subject><subject>Information retrieval. Graph</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Recall</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><subject>Upper bounds</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKs_oLvZiKsZ773JZDJLKWqFQjcK7kLMQ6fMy6QF_fdOaXF1OfCdw-VjbIFQIKC83xbOdAUBYgGyAOBnbIaqolxWFZ6z2cTInFC9X7KrlLYAgFOascWmz1YmmvibNb3zP9kQss9oxq90zS6CaZO_Od05e3t6fF2u8vXm-WX5sM4tL2GXU4WGrICSOy6CtMJCcGSEUgJtXUvB3UcVnBDAS-m5JAqGSi-s5S6AJD5nd8fdMQ7fe592umuS9W1rej_sk66xrkmp-kDikbRxSCn6oMfYdNPrGkEfLOitnizogwUNUk8Wps7tad0ka9oQTW-b9F8kITiVivM_UI5a9w</recordid><startdate>20110906</startdate><enddate>20110906</enddate><creator>KEXIANG XU</creator><creator>DAS, Kinkar Ch</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110906</creationdate><title>On Harary index of graphs</title><author>KEXIANG XU ; DAS, Kinkar Ch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-271a2c4053d34f6c4c0fd2a48841c99643db7fd440356e3622fa25e4cc3df0623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graphs</topic><topic>Information retrieval. Graph</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Recall</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KEXIANG XU</creatorcontrib><creatorcontrib>DAS, Kinkar Ch</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KEXIANG XU</au><au>DAS, Kinkar Ch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Harary index of graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2011-09-06</date><risdate>2011</risdate><volume>159</volume><issue>15</issue><spage>1631</spage><epage>1640</epage><pages>1631-1640</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><coden>DAMADU</coden><abstract>The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. For a connected graph G=(V,E) and two nonadjacent vertices v sub(i and v) sub(j) in V(G) of G, recall that G+v sub(iv) sub(j) is the supergraph formed from G by adding an edge between vertices v sub(i and v) sub(j). Denote the Harary index of G and G+v sub(iv) sub(j) by H(G) and H(G+v sub(iv) sub(j)), respectively. We obtain lower and upper bounds on H(G+v sub(iv) sub(j))-H(G), and characterize the equality cases in those bounds. Finally, in this paper, we present some lower and upper bounds on the Harary index of graphs with different parameters, such as clique number and chromatic number, and characterize the extremal graphs at which the lower or upper bounds on the Harary index are attained.</abstract><cop>Kidlington</cop><pub>Elsevier</pub><doi>10.1016/j.dam.2011.06.003</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2011-09, Vol.159 (15), p.1631-1640 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_miscellaneous_919928892 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Combinatorics Combinatorics. Ordered structures Computer science control theory systems Exact sciences and technology Graphs Information retrieval. Graph Mathematical analysis Mathematics Recall Sciences and techniques of general use Theoretical computing Upper bounds |
title | On Harary index of graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Harary%20index%20of%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=KEXIANG%20XU&rft.date=2011-09-06&rft.volume=159&rft.issue=15&rft.spage=1631&rft.epage=1640&rft.pages=1631-1640&rft.issn=0166-218X&rft.eissn=1872-6771&rft.coden=DAMADU&rft_id=info:doi/10.1016/j.dam.2011.06.003&rft_dat=%3Cproquest_cross%3E919928892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919928892&rft_id=info:pmid/&rfr_iscdi=true |