On Harary index of graphs

The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. For a connected graph G=(V,E) and two nonadjacent vertices v sub(i and v) sub(j) in V(G) of G, recall that G+v sub(iv) sub(j) is the supergraph formed from G by adding an edge betwe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2011-09, Vol.159 (15), p.1631-1640
Hauptverfasser: KEXIANG XU, DAS, Kinkar Ch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1640
container_issue 15
container_start_page 1631
container_title Discrete Applied Mathematics
container_volume 159
creator KEXIANG XU
DAS, Kinkar Ch
description The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. For a connected graph G=(V,E) and two nonadjacent vertices v sub(i and v) sub(j) in V(G) of G, recall that G+v sub(iv) sub(j) is the supergraph formed from G by adding an edge between vertices v sub(i and v) sub(j). Denote the Harary index of G and G+v sub(iv) sub(j) by H(G) and H(G+v sub(iv) sub(j)), respectively. We obtain lower and upper bounds on H(G+v sub(iv) sub(j))-H(G), and characterize the equality cases in those bounds. Finally, in this paper, we present some lower and upper bounds on the Harary index of graphs with different parameters, such as clique number and chromatic number, and characterize the extremal graphs at which the lower or upper bounds on the Harary index are attained.
doi_str_mv 10.1016/j.dam.2011.06.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919928892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919928892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-271a2c4053d34f6c4c0fd2a48841c99643db7fd440356e3622fa25e4cc3df0623</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_oLvZiKsZ773JZDJLKWqFQjcK7kLMQ6fMy6QF_fdOaXF1OfCdw-VjbIFQIKC83xbOdAUBYgGyAOBnbIaqolxWFZ6z2cTInFC9X7KrlLYAgFOascWmz1YmmvibNb3zP9kQss9oxq90zS6CaZO_Od05e3t6fF2u8vXm-WX5sM4tL2GXU4WGrICSOy6CtMJCcGSEUgJtXUvB3UcVnBDAS-m5JAqGSi-s5S6AJD5nd8fdMQ7fe592umuS9W1rej_sk66xrkmp-kDikbRxSCn6oMfYdNPrGkEfLOitnizogwUNUk8Wps7tad0ka9oQTW-b9F8kITiVivM_UI5a9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919928892</pqid></control><display><type>article</type><title>On Harary index of graphs</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>KEXIANG XU ; DAS, Kinkar Ch</creator><creatorcontrib>KEXIANG XU ; DAS, Kinkar Ch</creatorcontrib><description>The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. For a connected graph G=(V,E) and two nonadjacent vertices v sub(i and v) sub(j) in V(G) of G, recall that G+v sub(iv) sub(j) is the supergraph formed from G by adding an edge between vertices v sub(i and v) sub(j). Denote the Harary index of G and G+v sub(iv) sub(j) by H(G) and H(G+v sub(iv) sub(j)), respectively. We obtain lower and upper bounds on H(G+v sub(iv) sub(j))-H(G), and characterize the equality cases in those bounds. Finally, in this paper, we present some lower and upper bounds on the Harary index of graphs with different parameters, such as clique number and chromatic number, and characterize the extremal graphs at which the lower or upper bounds on the Harary index are attained.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2011.06.003</identifier><identifier>CODEN: DAMADU</identifier><language>eng</language><publisher>Kidlington: Elsevier</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; Graphs ; Information retrieval. Graph ; Mathematical analysis ; Mathematics ; Recall ; Sciences and techniques of general use ; Theoretical computing ; Upper bounds</subject><ispartof>Discrete Applied Mathematics, 2011-09, Vol.159 (15), p.1631-1640</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-271a2c4053d34f6c4c0fd2a48841c99643db7fd440356e3622fa25e4cc3df0623</citedby><cites>FETCH-LOGICAL-c350t-271a2c4053d34f6c4c0fd2a48841c99643db7fd440356e3622fa25e4cc3df0623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24432583$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KEXIANG XU</creatorcontrib><creatorcontrib>DAS, Kinkar Ch</creatorcontrib><title>On Harary index of graphs</title><title>Discrete Applied Mathematics</title><description>The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. For a connected graph G=(V,E) and two nonadjacent vertices v sub(i and v) sub(j) in V(G) of G, recall that G+v sub(iv) sub(j) is the supergraph formed from G by adding an edge between vertices v sub(i and v) sub(j). Denote the Harary index of G and G+v sub(iv) sub(j) by H(G) and H(G+v sub(iv) sub(j)), respectively. We obtain lower and upper bounds on H(G+v sub(iv) sub(j))-H(G), and characterize the equality cases in those bounds. Finally, in this paper, we present some lower and upper bounds on the Harary index of graphs with different parameters, such as clique number and chromatic number, and characterize the extremal graphs at which the lower or upper bounds on the Harary index are attained.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graphs</subject><subject>Information retrieval. Graph</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Recall</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><subject>Upper bounds</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKs_oLvZiKsZ773JZDJLKWqFQjcK7kLMQ6fMy6QF_fdOaXF1OfCdw-VjbIFQIKC83xbOdAUBYgGyAOBnbIaqolxWFZ6z2cTInFC9X7KrlLYAgFOascWmz1YmmvibNb3zP9kQss9oxq90zS6CaZO_Od05e3t6fF2u8vXm-WX5sM4tL2GXU4WGrICSOy6CtMJCcGSEUgJtXUvB3UcVnBDAS-m5JAqGSi-s5S6AJD5nd8fdMQ7fe592umuS9W1rej_sk66xrkmp-kDikbRxSCn6oMfYdNPrGkEfLOitnizogwUNUk8Wps7tad0ka9oQTW-b9F8kITiVivM_UI5a9w</recordid><startdate>20110906</startdate><enddate>20110906</enddate><creator>KEXIANG XU</creator><creator>DAS, Kinkar Ch</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110906</creationdate><title>On Harary index of graphs</title><author>KEXIANG XU ; DAS, Kinkar Ch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-271a2c4053d34f6c4c0fd2a48841c99643db7fd440356e3622fa25e4cc3df0623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graphs</topic><topic>Information retrieval. Graph</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Recall</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KEXIANG XU</creatorcontrib><creatorcontrib>DAS, Kinkar Ch</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KEXIANG XU</au><au>DAS, Kinkar Ch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Harary index of graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2011-09-06</date><risdate>2011</risdate><volume>159</volume><issue>15</issue><spage>1631</spage><epage>1640</epage><pages>1631-1640</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><coden>DAMADU</coden><abstract>The Harary index is defined as the sum of reciprocals of distances between all pairs of vertices of a connected graph. For a connected graph G=(V,E) and two nonadjacent vertices v sub(i and v) sub(j) in V(G) of G, recall that G+v sub(iv) sub(j) is the supergraph formed from G by adding an edge between vertices v sub(i and v) sub(j). Denote the Harary index of G and G+v sub(iv) sub(j) by H(G) and H(G+v sub(iv) sub(j)), respectively. We obtain lower and upper bounds on H(G+v sub(iv) sub(j))-H(G), and characterize the equality cases in those bounds. Finally, in this paper, we present some lower and upper bounds on the Harary index of graphs with different parameters, such as clique number and chromatic number, and characterize the extremal graphs at which the lower or upper bounds on the Harary index are attained.</abstract><cop>Kidlington</cop><pub>Elsevier</pub><doi>10.1016/j.dam.2011.06.003</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2011-09, Vol.159 (15), p.1631-1640
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_miscellaneous_919928892
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Combinatorics
Combinatorics. Ordered structures
Computer science
control theory
systems
Exact sciences and technology
Graphs
Information retrieval. Graph
Mathematical analysis
Mathematics
Recall
Sciences and techniques of general use
Theoretical computing
Upper bounds
title On Harary index of graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Harary%20index%20of%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=KEXIANG%20XU&rft.date=2011-09-06&rft.volume=159&rft.issue=15&rft.spage=1631&rft.epage=1640&rft.pages=1631-1640&rft.issn=0166-218X&rft.eissn=1872-6771&rft.coden=DAMADU&rft_id=info:doi/10.1016/j.dam.2011.06.003&rft_dat=%3Cproquest_cross%3E919928892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919928892&rft_id=info:pmid/&rfr_iscdi=true