Lattice and emittance optimization techniques and the ALS brightness upgrade

An upgrade project is under way to further improve the brightness of the Advanced Light Source at Berkeley Lab by reducing its horizontal emittance from 6.3 to 2.2 nm (effective emittance in the straights from 6.4 to 2.5 nm). This will result in a brightness increase by a factor of three for bend ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2011-09, Vol.649 (1), p.25-29
Hauptverfasser: Steier, C., Madur, A., Nishimura, H., Robin, D., Sannibale, F., Sun, C., Wan, W., Yang, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An upgrade project is under way to further improve the brightness of the Advanced Light Source at Berkeley Lab by reducing its horizontal emittance from 6.3 to 2.2 nm (effective emittance in the straights from 6.4 to 2.5 nm). This will result in a brightness increase by a factor of three for bend magnet beamlines and at least a factor of two for insertion device beamlines and will keep the ALS competitive with newer sources. This paper presents an overview of the upgrade project with emphasis on the nonlinear beam dynamics simulations. It also discusses in a more general way the techniques used at LBNL for finding optimum lattices (e.g. the ones with maximum brightness) and optimizing the particle dynamics, thereby increasing beam lifetime and stability.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2010.11.077