Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries

► Flower-like ZnO–CoO–C nanowall arrays were fabricated through solution-immersion steps and subsequent calcinations. ► The arrays exhibited high capacity and rate capability as anodes of lithium-ion batteries. ► The catalytic effect of Co phase on the decomposition of Li 2O mainly account for the h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2011-09, Vol.509 (37), p.9207-9213
Hauptverfasser: Wu, Zhao, Qin, Liming, Pan, Qinmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9213
container_issue 37
container_start_page 9207
container_title Journal of alloys and compounds
container_volume 509
creator Wu, Zhao
Qin, Liming
Pan, Qinmin
description ► Flower-like ZnO–CoO–C nanowall arrays were fabricated through solution-immersion steps and subsequent calcinations. ► The arrays exhibited high capacity and rate capability as anodes of lithium-ion batteries. ► The catalytic effect of Co phase on the decomposition of Li 2O mainly account for the high capacity. ► The conducting carbon layer formed on ZnO nanowalls is responsible for the high rate capability. This study reported the electrochemical performance of flower-like ZnO–CoO–C nanowall arrays as anodes of lithium-ion batteries. The arrays were fabricated through solution-immersion steps and subsequent calcination at 400 °C. At a rate of 0.5 C, the arrays exhibited a delithiation capacity of 438 mA h g −1 at the 50th cycle. The arrays still delivered a reversible capacity of 224 mA h g −1 at 2.0 C rate, much higher than those of the flower-like ZnO and ZnO–C nanowall arrays. The mechanism for the high capacity of flower-like ZnO–CoO–C nanowall arrays mainly resulted from the catalytic effect of Co phase on the decomposition of Li 2O and the conducting carbon layer formed on ZnO nanowalls. The present finding also provides a kind of nanostructured films that might be applied in solar cells and sensors, etc.
doi_str_mv 10.1016/j.jallcom.2011.06.114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919928098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838811014277</els_id><sourcerecordid>919928098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8a9d1689f9e639f0ac3fc90b0e4f0b4b0eae8350d0924a6060e636480d97b3ca3</originalsourceid><addsrcrecordid>eNqFkMFqGzEQhkVpoG7aRyjoUnrazcgrK9KpFNM0gUAu7aUXMasdYbnaVSqtE3zLO_QN-ySRY9NrYdCA-P_5Zz7GPghoBQh1sW23GKNLY7sEIVpQrRDyFVsIfdk1Uinzmi3ALFeN7rR-w96WsgUAYTqxYPsr7HNwOIc0cZwGTpHcnJPb0Fi_I-9pgw8hZZ489zE9Um5i-EX853T39-nPOr28fMIpPdYlOOaM-8Kx1pQGKtxXawzzJuzG5pDR4zxTDlTesTOPsdD7Uz9nP66-fl9fN7d3327WX24bJ0HPjUYzCKWNN6Q64wFd552BHkh66GXtSLpbwVAvlKhAQdUpqWEwl33nsDtnn45z73P6vaMy2zEURzHiRGlXrBHGLDUYXZWro9LlVEomb-9zGDHvrQB7IG239kTaHkhbULaSrr6PpwQsFZnPOLlQ_pmXUq5k3b3qPh91VM99CJRtcYEmR0PIFbodUvhP0jPAspqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919928098</pqid></control><display><type>article</type><title>Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Wu, Zhao ; Qin, Liming ; Pan, Qinmin</creator><creatorcontrib>Wu, Zhao ; Qin, Liming ; Pan, Qinmin</creatorcontrib><description>► Flower-like ZnO–CoO–C nanowall arrays were fabricated through solution-immersion steps and subsequent calcinations. ► The arrays exhibited high capacity and rate capability as anodes of lithium-ion batteries. ► The catalytic effect of Co phase on the decomposition of Li 2O mainly account for the high capacity. ► The conducting carbon layer formed on ZnO nanowalls is responsible for the high rate capability. This study reported the electrochemical performance of flower-like ZnO–CoO–C nanowall arrays as anodes of lithium-ion batteries. The arrays were fabricated through solution-immersion steps and subsequent calcination at 400 °C. At a rate of 0.5 C, the arrays exhibited a delithiation capacity of 438 mA h g −1 at the 50th cycle. The arrays still delivered a reversible capacity of 224 mA h g −1 at 2.0 C rate, much higher than those of the flower-like ZnO and ZnO–C nanowall arrays. The mechanism for the high capacity of flower-like ZnO–CoO–C nanowall arrays mainly resulted from the catalytic effect of Co phase on the decomposition of Li 2O and the conducting carbon layer formed on ZnO nanowalls. The present finding also provides a kind of nanostructured films that might be applied in solar cells and sensors, etc.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2011.06.114</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Anodes ; Applied sciences ; Arrays ; Carbon ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical performance ; Energy ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Flower-like ZnO–CoO–C nanowall arrays ; Lithium ion batteries ; Materials science ; Mechanism ; Nanocomposites ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Natural energy ; Other topics in nanoscale materials and structures ; Photovoltaic conversion ; Physics ; Solar cells. Photoelectrochemical cells ; Solar energy ; Solubility, segregation, and mixing; phase separation ; Zinc oxide</subject><ispartof>Journal of alloys and compounds, 2011-09, Vol.509 (37), p.9207-9213</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8a9d1689f9e639f0ac3fc90b0e4f0b4b0eae8350d0924a6060e636480d97b3ca3</citedby><cites>FETCH-LOGICAL-c408t-8a9d1689f9e639f0ac3fc90b0e4f0b4b0eae8350d0924a6060e636480d97b3ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2011.06.114$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24454639$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Zhao</creatorcontrib><creatorcontrib>Qin, Liming</creatorcontrib><creatorcontrib>Pan, Qinmin</creatorcontrib><title>Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries</title><title>Journal of alloys and compounds</title><description>► Flower-like ZnO–CoO–C nanowall arrays were fabricated through solution-immersion steps and subsequent calcinations. ► The arrays exhibited high capacity and rate capability as anodes of lithium-ion batteries. ► The catalytic effect of Co phase on the decomposition of Li 2O mainly account for the high capacity. ► The conducting carbon layer formed on ZnO nanowalls is responsible for the high rate capability. This study reported the electrochemical performance of flower-like ZnO–CoO–C nanowall arrays as anodes of lithium-ion batteries. The arrays were fabricated through solution-immersion steps and subsequent calcination at 400 °C. At a rate of 0.5 C, the arrays exhibited a delithiation capacity of 438 mA h g −1 at the 50th cycle. The arrays still delivered a reversible capacity of 224 mA h g −1 at 2.0 C rate, much higher than those of the flower-like ZnO and ZnO–C nanowall arrays. The mechanism for the high capacity of flower-like ZnO–CoO–C nanowall arrays mainly resulted from the catalytic effect of Co phase on the decomposition of Li 2O and the conducting carbon layer formed on ZnO nanowalls. The present finding also provides a kind of nanostructured films that might be applied in solar cells and sensors, etc.</description><subject>Anodes</subject><subject>Applied sciences</subject><subject>Arrays</subject><subject>Carbon</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical performance</subject><subject>Energy</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Flower-like ZnO–CoO–C nanowall arrays</subject><subject>Lithium ion batteries</subject><subject>Materials science</subject><subject>Mechanism</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Natural energy</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Solubility, segregation, and mixing; phase separation</subject><subject>Zinc oxide</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFqGzEQhkVpoG7aRyjoUnrazcgrK9KpFNM0gUAu7aUXMasdYbnaVSqtE3zLO_QN-ySRY9NrYdCA-P_5Zz7GPghoBQh1sW23GKNLY7sEIVpQrRDyFVsIfdk1Uinzmi3ALFeN7rR-w96WsgUAYTqxYPsr7HNwOIc0cZwGTpHcnJPb0Fi_I-9pgw8hZZ489zE9Um5i-EX853T39-nPOr28fMIpPdYlOOaM-8Kx1pQGKtxXawzzJuzG5pDR4zxTDlTesTOPsdD7Uz9nP66-fl9fN7d3327WX24bJ0HPjUYzCKWNN6Q64wFd552BHkh66GXtSLpbwVAvlKhAQdUpqWEwl33nsDtnn45z73P6vaMy2zEURzHiRGlXrBHGLDUYXZWro9LlVEomb-9zGDHvrQB7IG239kTaHkhbULaSrr6PpwQsFZnPOLlQ_pmXUq5k3b3qPh91VM99CJRtcYEmR0PIFbodUvhP0jPAspqA</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Wu, Zhao</creator><creator>Qin, Liming</creator><creator>Pan, Qinmin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110915</creationdate><title>Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries</title><author>Wu, Zhao ; Qin, Liming ; Pan, Qinmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8a9d1689f9e639f0ac3fc90b0e4f0b4b0eae8350d0924a6060e636480d97b3ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anodes</topic><topic>Applied sciences</topic><topic>Arrays</topic><topic>Carbon</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical performance</topic><topic>Energy</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Flower-like ZnO–CoO–C nanowall arrays</topic><topic>Lithium ion batteries</topic><topic>Materials science</topic><topic>Mechanism</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Natural energy</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Solubility, segregation, and mixing; phase separation</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhao</creatorcontrib><creatorcontrib>Qin, Liming</creatorcontrib><creatorcontrib>Pan, Qinmin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhao</au><au>Qin, Liming</au><au>Pan, Qinmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2011-09-15</date><risdate>2011</risdate><volume>509</volume><issue>37</issue><spage>9207</spage><epage>9213</epage><pages>9207-9213</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>► Flower-like ZnO–CoO–C nanowall arrays were fabricated through solution-immersion steps and subsequent calcinations. ► The arrays exhibited high capacity and rate capability as anodes of lithium-ion batteries. ► The catalytic effect of Co phase on the decomposition of Li 2O mainly account for the high capacity. ► The conducting carbon layer formed on ZnO nanowalls is responsible for the high rate capability. This study reported the electrochemical performance of flower-like ZnO–CoO–C nanowall arrays as anodes of lithium-ion batteries. The arrays were fabricated through solution-immersion steps and subsequent calcination at 400 °C. At a rate of 0.5 C, the arrays exhibited a delithiation capacity of 438 mA h g −1 at the 50th cycle. The arrays still delivered a reversible capacity of 224 mA h g −1 at 2.0 C rate, much higher than those of the flower-like ZnO and ZnO–C nanowall arrays. The mechanism for the high capacity of flower-like ZnO–CoO–C nanowall arrays mainly resulted from the catalytic effect of Co phase on the decomposition of Li 2O and the conducting carbon layer formed on ZnO nanowalls. The present finding also provides a kind of nanostructured films that might be applied in solar cells and sensors, etc.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2011.06.114</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2011-09, Vol.509 (37), p.9207-9213
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_miscellaneous_919928098
source ScienceDirect Freedom Collection (Elsevier)
subjects Anodes
Applied sciences
Arrays
Carbon
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrochemical performance
Energy
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Flower-like ZnO–CoO–C nanowall arrays
Lithium ion batteries
Materials science
Mechanism
Nanocomposites
Nanomaterials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Natural energy
Other topics in nanoscale materials and structures
Photovoltaic conversion
Physics
Solar cells. Photoelectrochemical cells
Solar energy
Solubility, segregation, and mixing
phase separation
Zinc oxide
title Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20electrochemical%20behavior%20of%20flower-like%20ZnO%E2%80%93CoO%E2%80%93C%20nanowall%20arrays%20as%20anodes%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Wu,%20Zhao&rft.date=2011-09-15&rft.volume=509&rft.issue=37&rft.spage=9207&rft.epage=9213&rft.pages=9207-9213&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2011.06.114&rft_dat=%3Cproquest_cross%3E919928098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919928098&rft_id=info:pmid/&rft_els_id=S0925838811014277&rfr_iscdi=true