Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries
► Flower-like ZnO–CoO–C nanowall arrays were fabricated through solution-immersion steps and subsequent calcinations. ► The arrays exhibited high capacity and rate capability as anodes of lithium-ion batteries. ► The catalytic effect of Co phase on the decomposition of Li 2O mainly account for the h...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2011-09, Vol.509 (37), p.9207-9213 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9213 |
---|---|
container_issue | 37 |
container_start_page | 9207 |
container_title | Journal of alloys and compounds |
container_volume | 509 |
creator | Wu, Zhao Qin, Liming Pan, Qinmin |
description | ► Flower-like ZnO–CoO–C nanowall arrays were fabricated through solution-immersion steps and subsequent calcinations. ► The arrays exhibited high capacity and rate capability as anodes of lithium-ion batteries. ► The catalytic effect of Co phase on the decomposition of Li
2O mainly account for the high capacity. ► The conducting carbon layer formed on ZnO nanowalls is responsible for the high rate capability.
This study reported the electrochemical performance of flower-like ZnO–CoO–C nanowall arrays as anodes of lithium-ion batteries. The arrays were fabricated through solution-immersion steps and subsequent calcination at 400
°C. At a rate of 0.5
C, the arrays exhibited a delithiation capacity of 438
mA
h
g
−1 at the 50th cycle. The arrays still delivered a reversible capacity of 224
mA
h
g
−1 at 2.0
C rate, much higher than those of the flower-like ZnO and ZnO–C nanowall arrays. The mechanism for the high capacity of flower-like ZnO–CoO–C nanowall arrays mainly resulted from the catalytic effect of Co phase on the decomposition of Li
2O and the conducting carbon layer formed on ZnO nanowalls. The present finding also provides a kind of nanostructured films that might be applied in solar cells and sensors, etc. |
doi_str_mv | 10.1016/j.jallcom.2011.06.114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919928098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838811014277</els_id><sourcerecordid>919928098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8a9d1689f9e639f0ac3fc90b0e4f0b4b0eae8350d0924a6060e636480d97b3ca3</originalsourceid><addsrcrecordid>eNqFkMFqGzEQhkVpoG7aRyjoUnrazcgrK9KpFNM0gUAu7aUXMasdYbnaVSqtE3zLO_QN-ySRY9NrYdCA-P_5Zz7GPghoBQh1sW23GKNLY7sEIVpQrRDyFVsIfdk1Uinzmi3ALFeN7rR-w96WsgUAYTqxYPsr7HNwOIc0cZwGTpHcnJPb0Fi_I-9pgw8hZZ489zE9Um5i-EX853T39-nPOr28fMIpPdYlOOaM-8Kx1pQGKtxXawzzJuzG5pDR4zxTDlTesTOPsdD7Uz9nP66-fl9fN7d3327WX24bJ0HPjUYzCKWNN6Q64wFd552BHkh66GXtSLpbwVAvlKhAQdUpqWEwl33nsDtnn45z73P6vaMy2zEURzHiRGlXrBHGLDUYXZWro9LlVEomb-9zGDHvrQB7IG239kTaHkhbULaSrr6PpwQsFZnPOLlQ_pmXUq5k3b3qPh91VM99CJRtcYEmR0PIFbodUvhP0jPAspqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919928098</pqid></control><display><type>article</type><title>Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Wu, Zhao ; Qin, Liming ; Pan, Qinmin</creator><creatorcontrib>Wu, Zhao ; Qin, Liming ; Pan, Qinmin</creatorcontrib><description>► Flower-like ZnO–CoO–C nanowall arrays were fabricated through solution-immersion steps and subsequent calcinations. ► The arrays exhibited high capacity and rate capability as anodes of lithium-ion batteries. ► The catalytic effect of Co phase on the decomposition of Li
2O mainly account for the high capacity. ► The conducting carbon layer formed on ZnO nanowalls is responsible for the high rate capability.
This study reported the electrochemical performance of flower-like ZnO–CoO–C nanowall arrays as anodes of lithium-ion batteries. The arrays were fabricated through solution-immersion steps and subsequent calcination at 400
°C. At a rate of 0.5
C, the arrays exhibited a delithiation capacity of 438
mA
h
g
−1 at the 50th cycle. The arrays still delivered a reversible capacity of 224
mA
h
g
−1 at 2.0
C rate, much higher than those of the flower-like ZnO and ZnO–C nanowall arrays. The mechanism for the high capacity of flower-like ZnO–CoO–C nanowall arrays mainly resulted from the catalytic effect of Co phase on the decomposition of Li
2O and the conducting carbon layer formed on ZnO nanowalls. The present finding also provides a kind of nanostructured films that might be applied in solar cells and sensors, etc.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2011.06.114</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Anodes ; Applied sciences ; Arrays ; Carbon ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical performance ; Energy ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Flower-like ZnO–CoO–C nanowall arrays ; Lithium ion batteries ; Materials science ; Mechanism ; Nanocomposites ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Natural energy ; Other topics in nanoscale materials and structures ; Photovoltaic conversion ; Physics ; Solar cells. Photoelectrochemical cells ; Solar energy ; Solubility, segregation, and mixing; phase separation ; Zinc oxide</subject><ispartof>Journal of alloys and compounds, 2011-09, Vol.509 (37), p.9207-9213</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8a9d1689f9e639f0ac3fc90b0e4f0b4b0eae8350d0924a6060e636480d97b3ca3</citedby><cites>FETCH-LOGICAL-c408t-8a9d1689f9e639f0ac3fc90b0e4f0b4b0eae8350d0924a6060e636480d97b3ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2011.06.114$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24454639$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Zhao</creatorcontrib><creatorcontrib>Qin, Liming</creatorcontrib><creatorcontrib>Pan, Qinmin</creatorcontrib><title>Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries</title><title>Journal of alloys and compounds</title><description>► Flower-like ZnO–CoO–C nanowall arrays were fabricated through solution-immersion steps and subsequent calcinations. ► The arrays exhibited high capacity and rate capability as anodes of lithium-ion batteries. ► The catalytic effect of Co phase on the decomposition of Li
2O mainly account for the high capacity. ► The conducting carbon layer formed on ZnO nanowalls is responsible for the high rate capability.
This study reported the electrochemical performance of flower-like ZnO–CoO–C nanowall arrays as anodes of lithium-ion batteries. The arrays were fabricated through solution-immersion steps and subsequent calcination at 400
°C. At a rate of 0.5
C, the arrays exhibited a delithiation capacity of 438
mA
h
g
−1 at the 50th cycle. The arrays still delivered a reversible capacity of 224
mA
h
g
−1 at 2.0
C rate, much higher than those of the flower-like ZnO and ZnO–C nanowall arrays. The mechanism for the high capacity of flower-like ZnO–CoO–C nanowall arrays mainly resulted from the catalytic effect of Co phase on the decomposition of Li
2O and the conducting carbon layer formed on ZnO nanowalls. The present finding also provides a kind of nanostructured films that might be applied in solar cells and sensors, etc.</description><subject>Anodes</subject><subject>Applied sciences</subject><subject>Arrays</subject><subject>Carbon</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical performance</subject><subject>Energy</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Flower-like ZnO–CoO–C nanowall arrays</subject><subject>Lithium ion batteries</subject><subject>Materials science</subject><subject>Mechanism</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Natural energy</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Photovoltaic conversion</subject><subject>Physics</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Solubility, segregation, and mixing; phase separation</subject><subject>Zinc oxide</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMFqGzEQhkVpoG7aRyjoUnrazcgrK9KpFNM0gUAu7aUXMasdYbnaVSqtE3zLO_QN-ySRY9NrYdCA-P_5Zz7GPghoBQh1sW23GKNLY7sEIVpQrRDyFVsIfdk1Uinzmi3ALFeN7rR-w96WsgUAYTqxYPsr7HNwOIc0cZwGTpHcnJPb0Fi_I-9pgw8hZZ489zE9Um5i-EX853T39-nPOr28fMIpPdYlOOaM-8Kx1pQGKtxXawzzJuzG5pDR4zxTDlTesTOPsdD7Uz9nP66-fl9fN7d3327WX24bJ0HPjUYzCKWNN6Q64wFd552BHkh66GXtSLpbwVAvlKhAQdUpqWEwl33nsDtnn45z73P6vaMy2zEURzHiRGlXrBHGLDUYXZWro9LlVEomb-9zGDHvrQB7IG239kTaHkhbULaSrr6PpwQsFZnPOLlQ_pmXUq5k3b3qPh91VM99CJRtcYEmR0PIFbodUvhP0jPAspqA</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Wu, Zhao</creator><creator>Qin, Liming</creator><creator>Pan, Qinmin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110915</creationdate><title>Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries</title><author>Wu, Zhao ; Qin, Liming ; Pan, Qinmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8a9d1689f9e639f0ac3fc90b0e4f0b4b0eae8350d0924a6060e636480d97b3ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anodes</topic><topic>Applied sciences</topic><topic>Arrays</topic><topic>Carbon</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical performance</topic><topic>Energy</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Flower-like ZnO–CoO–C nanowall arrays</topic><topic>Lithium ion batteries</topic><topic>Materials science</topic><topic>Mechanism</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Natural energy</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Photovoltaic conversion</topic><topic>Physics</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Solubility, segregation, and mixing; phase separation</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhao</creatorcontrib><creatorcontrib>Qin, Liming</creatorcontrib><creatorcontrib>Pan, Qinmin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhao</au><au>Qin, Liming</au><au>Pan, Qinmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2011-09-15</date><risdate>2011</risdate><volume>509</volume><issue>37</issue><spage>9207</spage><epage>9213</epage><pages>9207-9213</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>► Flower-like ZnO–CoO–C nanowall arrays were fabricated through solution-immersion steps and subsequent calcinations. ► The arrays exhibited high capacity and rate capability as anodes of lithium-ion batteries. ► The catalytic effect of Co phase on the decomposition of Li
2O mainly account for the high capacity. ► The conducting carbon layer formed on ZnO nanowalls is responsible for the high rate capability.
This study reported the electrochemical performance of flower-like ZnO–CoO–C nanowall arrays as anodes of lithium-ion batteries. The arrays were fabricated through solution-immersion steps and subsequent calcination at 400
°C. At a rate of 0.5
C, the arrays exhibited a delithiation capacity of 438
mA
h
g
−1 at the 50th cycle. The arrays still delivered a reversible capacity of 224
mA
h
g
−1 at 2.0
C rate, much higher than those of the flower-like ZnO and ZnO–C nanowall arrays. The mechanism for the high capacity of flower-like ZnO–CoO–C nanowall arrays mainly resulted from the catalytic effect of Co phase on the decomposition of Li
2O and the conducting carbon layer formed on ZnO nanowalls. The present finding also provides a kind of nanostructured films that might be applied in solar cells and sensors, etc.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2011.06.114</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2011-09, Vol.509 (37), p.9207-9213 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_miscellaneous_919928098 |
source | ScienceDirect Freedom Collection (Elsevier) |
subjects | Anodes Applied sciences Arrays Carbon Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemical performance Energy Equations of state, phase equilibria, and phase transitions Exact sciences and technology Flower-like ZnO–CoO–C nanowall arrays Lithium ion batteries Materials science Mechanism Nanocomposites Nanomaterials Nanoscale materials and structures: fabrication and characterization Nanostructure Natural energy Other topics in nanoscale materials and structures Photovoltaic conversion Physics Solar cells. Photoelectrochemical cells Solar energy Solubility, segregation, and mixing phase separation Zinc oxide |
title | Fabrication and electrochemical behavior of flower-like ZnO–CoO–C nanowall arrays as anodes for lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20electrochemical%20behavior%20of%20flower-like%20ZnO%E2%80%93CoO%E2%80%93C%20nanowall%20arrays%20as%20anodes%20for%20lithium-ion%20batteries&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Wu,%20Zhao&rft.date=2011-09-15&rft.volume=509&rft.issue=37&rft.spage=9207&rft.epage=9213&rft.pages=9207-9213&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2011.06.114&rft_dat=%3Cproquest_cross%3E919928098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919928098&rft_id=info:pmid/&rft_els_id=S0925838811014277&rfr_iscdi=true |