Investigation of the size effects in Timoshenko beams based on the couple stress theory

In this paper, a size-dependent Timoshenko beam is developed on the basis of the couple stress theory. The couple stress theory is a non-classic continuum theory capable of capturing the small-scale size effects on the mechanical behavior of structures, while the classical continuum theory is unable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive of applied mechanics (1991) 2011-07, Vol.81 (7), p.863-874
Hauptverfasser: Asghari, M., Kahrobaiyan, M. H., Rahaeifard, M., Ahmadian, M. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 874
container_issue 7
container_start_page 863
container_title Archive of applied mechanics (1991)
container_volume 81
creator Asghari, M.
Kahrobaiyan, M. H.
Rahaeifard, M.
Ahmadian, M. T.
description In this paper, a size-dependent Timoshenko beam is developed on the basis of the couple stress theory. The couple stress theory is a non-classic continuum theory capable of capturing the small-scale size effects on the mechanical behavior of structures, while the classical continuum theory is unable to predict the mechanical behavior accurately when the characteristic size of structures is close to the material length scale parameter. The governing differential equations of motion are derived for the couple-stress Timoshenko beam using the principles of linear and angular momentum. Then, the general form of boundary conditions and generally valid closed-form analytical solutions are obtained for the axial deformation, bending deflection, and the rotation angle of cross sections in the static cases. As an example, the closed-form analytical results are obtained for the response of a cantilever beam subjected to a static loading with a concentrated force at its free end. The results indicate that modeling on the basis of the couple stress theory causes more stiffness than modeling by the classical beam theory. In addition, the results indicate that the differences between the results of the proposed model and those based on the classical Euler–Bernoulli and classical Timoshenko beam theories are significant when the beam thickness is comparable to its material length scale parameter.
doi_str_mv 10.1007/s00419-010-0452-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919926649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919926649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-4f236690ca375f4fdfad61229c59a7ed01b2d2a8b1d165ff7ac89f32b2e486ef3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AG-5eapOkn7lKIsfCwteVjyGtJ3sdm2bNdMK66-3pZ49DQzvDcxj7FbAvQDIHgggFjoCARHEiYySM7YQsZIRpLk4ZwvQSkciUeqSXREdACYKFuxj3X0j9fXO9rXvuHe83yOn-gc5OodlT7zu-LZuPe2x-_S8QNsSLyxhxUdhoks_HJtR6gMSTRsfTtfswtmG8OZvLtn789N29Rpt3l7Wq8dNVCoJfRQ7qdJUQ2lVlrjYVc5WqZBSl4m2GVYgCllJmxeiEmniXGbLXDslC4lxnqJTS3Y33z0G_zWMn5i2phKbxnboBzJaaC3TNNYjKWayDJ4ooDPHULc2nIwAMzU0c0MzNjRTHZOMjpwdGtluh8Ec_BC68aF_pF_523U7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919926649</pqid></control><display><type>article</type><title>Investigation of the size effects in Timoshenko beams based on the couple stress theory</title><source>SpringerNature Journals</source><creator>Asghari, M. ; Kahrobaiyan, M. H. ; Rahaeifard, M. ; Ahmadian, M. T.</creator><creatorcontrib>Asghari, M. ; Kahrobaiyan, M. H. ; Rahaeifard, M. ; Ahmadian, M. T.</creatorcontrib><description>In this paper, a size-dependent Timoshenko beam is developed on the basis of the couple stress theory. The couple stress theory is a non-classic continuum theory capable of capturing the small-scale size effects on the mechanical behavior of structures, while the classical continuum theory is unable to predict the mechanical behavior accurately when the characteristic size of structures is close to the material length scale parameter. The governing differential equations of motion are derived for the couple-stress Timoshenko beam using the principles of linear and angular momentum. Then, the general form of boundary conditions and generally valid closed-form analytical solutions are obtained for the axial deformation, bending deflection, and the rotation angle of cross sections in the static cases. As an example, the closed-form analytical results are obtained for the response of a cantilever beam subjected to a static loading with a concentrated force at its free end. The results indicate that modeling on the basis of the couple stress theory causes more stiffness than modeling by the classical beam theory. In addition, the results indicate that the differences between the results of the proposed model and those based on the classical Euler–Bernoulli and classical Timoshenko beam theories are significant when the beam thickness is comparable to its material length scale parameter.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-010-0452-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Cantilever beams ; Classical Mechanics ; Continuums ; Engineering ; Exact solutions ; Joining ; Mathematical analysis ; Mathematical models ; Original ; Stresses ; Theoretical and Applied Mechanics ; Timoshenko beams</subject><ispartof>Archive of applied mechanics (1991), 2011-07, Vol.81 (7), p.863-874</ispartof><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-4f236690ca375f4fdfad61229c59a7ed01b2d2a8b1d165ff7ac89f32b2e486ef3</citedby><cites>FETCH-LOGICAL-c320t-4f236690ca375f4fdfad61229c59a7ed01b2d2a8b1d165ff7ac89f32b2e486ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-010-0452-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-010-0452-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Asghari, M.</creatorcontrib><creatorcontrib>Kahrobaiyan, M. H.</creatorcontrib><creatorcontrib>Rahaeifard, M.</creatorcontrib><creatorcontrib>Ahmadian, M. T.</creatorcontrib><title>Investigation of the size effects in Timoshenko beams based on the couple stress theory</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>In this paper, a size-dependent Timoshenko beam is developed on the basis of the couple stress theory. The couple stress theory is a non-classic continuum theory capable of capturing the small-scale size effects on the mechanical behavior of structures, while the classical continuum theory is unable to predict the mechanical behavior accurately when the characteristic size of structures is close to the material length scale parameter. The governing differential equations of motion are derived for the couple-stress Timoshenko beam using the principles of linear and angular momentum. Then, the general form of boundary conditions and generally valid closed-form analytical solutions are obtained for the axial deformation, bending deflection, and the rotation angle of cross sections in the static cases. As an example, the closed-form analytical results are obtained for the response of a cantilever beam subjected to a static loading with a concentrated force at its free end. The results indicate that modeling on the basis of the couple stress theory causes more stiffness than modeling by the classical beam theory. In addition, the results indicate that the differences between the results of the proposed model and those based on the classical Euler–Bernoulli and classical Timoshenko beam theories are significant when the beam thickness is comparable to its material length scale parameter.</description><subject>Cantilever beams</subject><subject>Classical Mechanics</subject><subject>Continuums</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Original</subject><subject>Stresses</subject><subject>Theoretical and Applied Mechanics</subject><subject>Timoshenko beams</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMouK7-AG-5eapOkn7lKIsfCwteVjyGtJ3sdm2bNdMK66-3pZ49DQzvDcxj7FbAvQDIHgggFjoCARHEiYySM7YQsZIRpLk4ZwvQSkciUeqSXREdACYKFuxj3X0j9fXO9rXvuHe83yOn-gc5OodlT7zu-LZuPe2x-_S8QNsSLyxhxUdhoks_HJtR6gMSTRsfTtfswtmG8OZvLtn789N29Rpt3l7Wq8dNVCoJfRQ7qdJUQ2lVlrjYVc5WqZBSl4m2GVYgCllJmxeiEmniXGbLXDslC4lxnqJTS3Y33z0G_zWMn5i2phKbxnboBzJaaC3TNNYjKWayDJ4ooDPHULc2nIwAMzU0c0MzNjRTHZOMjpwdGtluh8Ec_BC68aF_pF_523U7</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Asghari, M.</creator><creator>Kahrobaiyan, M. H.</creator><creator>Rahaeifard, M.</creator><creator>Ahmadian, M. T.</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20110701</creationdate><title>Investigation of the size effects in Timoshenko beams based on the couple stress theory</title><author>Asghari, M. ; Kahrobaiyan, M. H. ; Rahaeifard, M. ; Ahmadian, M. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-4f236690ca375f4fdfad61229c59a7ed01b2d2a8b1d165ff7ac89f32b2e486ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cantilever beams</topic><topic>Classical Mechanics</topic><topic>Continuums</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Original</topic><topic>Stresses</topic><topic>Theoretical and Applied Mechanics</topic><topic>Timoshenko beams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asghari, M.</creatorcontrib><creatorcontrib>Kahrobaiyan, M. H.</creatorcontrib><creatorcontrib>Rahaeifard, M.</creatorcontrib><creatorcontrib>Ahmadian, M. T.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asghari, M.</au><au>Kahrobaiyan, M. H.</au><au>Rahaeifard, M.</au><au>Ahmadian, M. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the size effects in Timoshenko beams based on the couple stress theory</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>81</volume><issue>7</issue><spage>863</spage><epage>874</epage><pages>863-874</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>In this paper, a size-dependent Timoshenko beam is developed on the basis of the couple stress theory. The couple stress theory is a non-classic continuum theory capable of capturing the small-scale size effects on the mechanical behavior of structures, while the classical continuum theory is unable to predict the mechanical behavior accurately when the characteristic size of structures is close to the material length scale parameter. The governing differential equations of motion are derived for the couple-stress Timoshenko beam using the principles of linear and angular momentum. Then, the general form of boundary conditions and generally valid closed-form analytical solutions are obtained for the axial deformation, bending deflection, and the rotation angle of cross sections in the static cases. As an example, the closed-form analytical results are obtained for the response of a cantilever beam subjected to a static loading with a concentrated force at its free end. The results indicate that modeling on the basis of the couple stress theory causes more stiffness than modeling by the classical beam theory. In addition, the results indicate that the differences between the results of the proposed model and those based on the classical Euler–Bernoulli and classical Timoshenko beam theories are significant when the beam thickness is comparable to its material length scale parameter.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00419-010-0452-5</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0939-1533
ispartof Archive of applied mechanics (1991), 2011-07, Vol.81 (7), p.863-874
issn 0939-1533
1432-0681
language eng
recordid cdi_proquest_miscellaneous_919926649
source SpringerNature Journals
subjects Cantilever beams
Classical Mechanics
Continuums
Engineering
Exact solutions
Joining
Mathematical analysis
Mathematical models
Original
Stresses
Theoretical and Applied Mechanics
Timoshenko beams
title Investigation of the size effects in Timoshenko beams based on the couple stress theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20size%20effects%20in%20Timoshenko%20beams%20based%20on%20the%20couple%20stress%20theory&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Asghari,%20M.&rft.date=2011-07-01&rft.volume=81&rft.issue=7&rft.spage=863&rft.epage=874&rft.pages=863-874&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-010-0452-5&rft_dat=%3Cproquest_cross%3E919926649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919926649&rft_id=info:pmid/&rfr_iscdi=true