Investigation of the size effects in Timoshenko beams based on the couple stress theory
In this paper, a size-dependent Timoshenko beam is developed on the basis of the couple stress theory. The couple stress theory is a non-classic continuum theory capable of capturing the small-scale size effects on the mechanical behavior of structures, while the classical continuum theory is unable...
Gespeichert in:
Veröffentlicht in: | Archive of applied mechanics (1991) 2011-07, Vol.81 (7), p.863-874 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 874 |
---|---|
container_issue | 7 |
container_start_page | 863 |
container_title | Archive of applied mechanics (1991) |
container_volume | 81 |
creator | Asghari, M. Kahrobaiyan, M. H. Rahaeifard, M. Ahmadian, M. T. |
description | In this paper, a size-dependent Timoshenko beam is developed on the basis of the couple stress theory. The couple stress theory is a non-classic continuum theory capable of capturing the small-scale size effects on the mechanical behavior of structures, while the classical continuum theory is unable to predict the mechanical behavior accurately when the characteristic size of structures is close to the material length scale parameter. The governing differential equations of motion are derived for the couple-stress Timoshenko beam using the principles of linear and angular momentum. Then, the general form of boundary conditions and generally valid closed-form analytical solutions are obtained for the axial deformation, bending deflection, and the rotation angle of cross sections in the static cases. As an example, the closed-form analytical results are obtained for the response of a cantilever beam subjected to a static loading with a concentrated force at its free end. The results indicate that modeling on the basis of the couple stress theory causes more stiffness than modeling by the classical beam theory. In addition, the results indicate that the differences between the results of the proposed model and those based on the classical Euler–Bernoulli and classical Timoshenko beam theories are significant when the beam thickness is comparable to its material length scale parameter. |
doi_str_mv | 10.1007/s00419-010-0452-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919926649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919926649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-4f236690ca375f4fdfad61229c59a7ed01b2d2a8b1d165ff7ac89f32b2e486ef3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQQIMouK7-AG-5eapOkn7lKIsfCwteVjyGtJ3sdm2bNdMK66-3pZ49DQzvDcxj7FbAvQDIHgggFjoCARHEiYySM7YQsZIRpLk4ZwvQSkciUeqSXREdACYKFuxj3X0j9fXO9rXvuHe83yOn-gc5OodlT7zu-LZuPe2x-_S8QNsSLyxhxUdhoks_HJtR6gMSTRsfTtfswtmG8OZvLtn789N29Rpt3l7Wq8dNVCoJfRQ7qdJUQ2lVlrjYVc5WqZBSl4m2GVYgCllJmxeiEmniXGbLXDslC4lxnqJTS3Y33z0G_zWMn5i2phKbxnboBzJaaC3TNNYjKWayDJ4ooDPHULc2nIwAMzU0c0MzNjRTHZOMjpwdGtluh8Ec_BC68aF_pF_523U7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919926649</pqid></control><display><type>article</type><title>Investigation of the size effects in Timoshenko beams based on the couple stress theory</title><source>SpringerNature Journals</source><creator>Asghari, M. ; Kahrobaiyan, M. H. ; Rahaeifard, M. ; Ahmadian, M. T.</creator><creatorcontrib>Asghari, M. ; Kahrobaiyan, M. H. ; Rahaeifard, M. ; Ahmadian, M. T.</creatorcontrib><description>In this paper, a size-dependent Timoshenko beam is developed on the basis of the couple stress theory. The couple stress theory is a non-classic continuum theory capable of capturing the small-scale size effects on the mechanical behavior of structures, while the classical continuum theory is unable to predict the mechanical behavior accurately when the characteristic size of structures is close to the material length scale parameter. The governing differential equations of motion are derived for the couple-stress Timoshenko beam using the principles of linear and angular momentum. Then, the general form of boundary conditions and generally valid closed-form analytical solutions are obtained for the axial deformation, bending deflection, and the rotation angle of cross sections in the static cases. As an example, the closed-form analytical results are obtained for the response of a cantilever beam subjected to a static loading with a concentrated force at its free end. The results indicate that modeling on the basis of the couple stress theory causes more stiffness than modeling by the classical beam theory. In addition, the results indicate that the differences between the results of the proposed model and those based on the classical Euler–Bernoulli and classical Timoshenko beam theories are significant when the beam thickness is comparable to its material length scale parameter.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-010-0452-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Cantilever beams ; Classical Mechanics ; Continuums ; Engineering ; Exact solutions ; Joining ; Mathematical analysis ; Mathematical models ; Original ; Stresses ; Theoretical and Applied Mechanics ; Timoshenko beams</subject><ispartof>Archive of applied mechanics (1991), 2011-07, Vol.81 (7), p.863-874</ispartof><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-4f236690ca375f4fdfad61229c59a7ed01b2d2a8b1d165ff7ac89f32b2e486ef3</citedby><cites>FETCH-LOGICAL-c320t-4f236690ca375f4fdfad61229c59a7ed01b2d2a8b1d165ff7ac89f32b2e486ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-010-0452-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-010-0452-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Asghari, M.</creatorcontrib><creatorcontrib>Kahrobaiyan, M. H.</creatorcontrib><creatorcontrib>Rahaeifard, M.</creatorcontrib><creatorcontrib>Ahmadian, M. T.</creatorcontrib><title>Investigation of the size effects in Timoshenko beams based on the couple stress theory</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>In this paper, a size-dependent Timoshenko beam is developed on the basis of the couple stress theory. The couple stress theory is a non-classic continuum theory capable of capturing the small-scale size effects on the mechanical behavior of structures, while the classical continuum theory is unable to predict the mechanical behavior accurately when the characteristic size of structures is close to the material length scale parameter. The governing differential equations of motion are derived for the couple-stress Timoshenko beam using the principles of linear and angular momentum. Then, the general form of boundary conditions and generally valid closed-form analytical solutions are obtained for the axial deformation, bending deflection, and the rotation angle of cross sections in the static cases. As an example, the closed-form analytical results are obtained for the response of a cantilever beam subjected to a static loading with a concentrated force at its free end. The results indicate that modeling on the basis of the couple stress theory causes more stiffness than modeling by the classical beam theory. In addition, the results indicate that the differences between the results of the proposed model and those based on the classical Euler–Bernoulli and classical Timoshenko beam theories are significant when the beam thickness is comparable to its material length scale parameter.</description><subject>Cantilever beams</subject><subject>Classical Mechanics</subject><subject>Continuums</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Original</subject><subject>Stresses</subject><subject>Theoretical and Applied Mechanics</subject><subject>Timoshenko beams</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQQIMouK7-AG-5eapOkn7lKIsfCwteVjyGtJ3sdm2bNdMK66-3pZ49DQzvDcxj7FbAvQDIHgggFjoCARHEiYySM7YQsZIRpLk4ZwvQSkciUeqSXREdACYKFuxj3X0j9fXO9rXvuHe83yOn-gc5OodlT7zu-LZuPe2x-_S8QNsSLyxhxUdhoks_HJtR6gMSTRsfTtfswtmG8OZvLtn789N29Rpt3l7Wq8dNVCoJfRQ7qdJUQ2lVlrjYVc5WqZBSl4m2GVYgCllJmxeiEmniXGbLXDslC4lxnqJTS3Y33z0G_zWMn5i2phKbxnboBzJaaC3TNNYjKWayDJ4ooDPHULc2nIwAMzU0c0MzNjRTHZOMjpwdGtluh8Ec_BC68aF_pF_523U7</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Asghari, M.</creator><creator>Kahrobaiyan, M. H.</creator><creator>Rahaeifard, M.</creator><creator>Ahmadian, M. T.</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20110701</creationdate><title>Investigation of the size effects in Timoshenko beams based on the couple stress theory</title><author>Asghari, M. ; Kahrobaiyan, M. H. ; Rahaeifard, M. ; Ahmadian, M. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-4f236690ca375f4fdfad61229c59a7ed01b2d2a8b1d165ff7ac89f32b2e486ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cantilever beams</topic><topic>Classical Mechanics</topic><topic>Continuums</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Original</topic><topic>Stresses</topic><topic>Theoretical and Applied Mechanics</topic><topic>Timoshenko beams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asghari, M.</creatorcontrib><creatorcontrib>Kahrobaiyan, M. H.</creatorcontrib><creatorcontrib>Rahaeifard, M.</creatorcontrib><creatorcontrib>Ahmadian, M. T.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asghari, M.</au><au>Kahrobaiyan, M. H.</au><au>Rahaeifard, M.</au><au>Ahmadian, M. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the size effects in Timoshenko beams based on the couple stress theory</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>81</volume><issue>7</issue><spage>863</spage><epage>874</epage><pages>863-874</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>In this paper, a size-dependent Timoshenko beam is developed on the basis of the couple stress theory. The couple stress theory is a non-classic continuum theory capable of capturing the small-scale size effects on the mechanical behavior of structures, while the classical continuum theory is unable to predict the mechanical behavior accurately when the characteristic size of structures is close to the material length scale parameter. The governing differential equations of motion are derived for the couple-stress Timoshenko beam using the principles of linear and angular momentum. Then, the general form of boundary conditions and generally valid closed-form analytical solutions are obtained for the axial deformation, bending deflection, and the rotation angle of cross sections in the static cases. As an example, the closed-form analytical results are obtained for the response of a cantilever beam subjected to a static loading with a concentrated force at its free end. The results indicate that modeling on the basis of the couple stress theory causes more stiffness than modeling by the classical beam theory. In addition, the results indicate that the differences between the results of the proposed model and those based on the classical Euler–Bernoulli and classical Timoshenko beam theories are significant when the beam thickness is comparable to its material length scale parameter.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00419-010-0452-5</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-1533 |
ispartof | Archive of applied mechanics (1991), 2011-07, Vol.81 (7), p.863-874 |
issn | 0939-1533 1432-0681 |
language | eng |
recordid | cdi_proquest_miscellaneous_919926649 |
source | SpringerNature Journals |
subjects | Cantilever beams Classical Mechanics Continuums Engineering Exact solutions Joining Mathematical analysis Mathematical models Original Stresses Theoretical and Applied Mechanics Timoshenko beams |
title | Investigation of the size effects in Timoshenko beams based on the couple stress theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20size%20effects%20in%20Timoshenko%20beams%20based%20on%20the%20couple%20stress%20theory&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Asghari,%20M.&rft.date=2011-07-01&rft.volume=81&rft.issue=7&rft.spage=863&rft.epage=874&rft.pages=863-874&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-010-0452-5&rft_dat=%3Cproquest_cross%3E919926649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919926649&rft_id=info:pmid/&rfr_iscdi=true |