Scuffing mechanism of near-surface material during lubricated severe sliding contact
Scuffing, defined as a sudden catastrophic failure of lubricated sliding contact, is one of the least understood tribological failure processes, in spite of its great technological significance. It is usually accompanied by a large sudden rise in friction, contact temperature, and noise. Occurrence...
Gespeichert in:
Veröffentlicht in: | Wear 2011-07, Vol.271 (9), p.1750-1753 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1753 |
---|---|
container_issue | 9 |
container_start_page | 1750 |
container_title | Wear |
container_volume | 271 |
creator | Ajayi, O.O. Lorenzo-Martin, C. Erck, R.A. Fenske, G.R. |
description | Scuffing, defined as a sudden catastrophic failure of lubricated sliding contact, is one of the least understood tribological failure processes, in spite of its great technological significance. It is usually accompanied by a large sudden rise in friction, contact temperature, and noise. Occurrence of scuffing results in loss of surface integrity and functionality of the tribological components. Although extensive phenomenological studies have been conducted on scuffing because of its implication regarding machine-element reliability, the basic mechanism of the failure process is still not well understood. Consequently, prediction and sometimes prevention of scuffing failure are difficult. Based on the recent observation of microstructural changes accompanying scuffing failure and various other phenomenological observations, a scuffing mechanism is proposed that involves adiabatic shear instability in the near-surface material at the sliding contact interface. Localized shear instability occurs when the rate of thermal softening due to the heat of plastic deformation exceeds the rate of work hardening—this is scuffing initiation. Propagation of scuffing to final catastrophic failure is determined by a balance between heat generation and heat dissipation. If the rate of heat generation by more plastic deformation exceeds the rate of heat dissipation, scuffing propagates; otherwise, the scuffing process is quenched. Once validated, this proposed mechanism will facilitate the prediction of scuffing based on material properties. It will also provide a mechanism-based strategy for scuffing failure prevention in tribological components. |
doi_str_mv | 10.1016/j.wear.2010.12.086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919925763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043164811003516</els_id><sourcerecordid>919925763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-dc8b532da8a5e5d581152e2c771fd2186cce3dae868256ea52956dee4f41d3403</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKe9iKddk-wmm4IXKX5BwYP1HNLJRFP2oya7Ff-9WVo8ehp455l3Zl5CrhgtGGXydlN8owkFp5PAC6rkEZkxVZc5F3V9TGaUVmXOZKVOyVmMG0opmws5I6s3GJ3z3UfWInyazsc2613WJbc8jsEZwKw1AwZvmsyOYSKbcR08JNFmEXcYMIuNt1MH-m4wMFyQE2eaiJeHek7eHx9Wi-d8-fr0srhf5lBxNeQW1FqU3BplBAorFGOCI4e6Zs5ypiQAltagkooLiUbwdLJFrFzFbFnR8pzc7H23of8aMQ669RGwaUyH_Rj1nM3n6X9ZJpLvSQh9jAGd3gbfmvCjGdVTgnqjpwT1lKBmXKcE09D1wd5EMI0LpgMf_yZ5VSkmyjpxd3sO0687j0FH8NgBWh8QBm17_9-aXz6ViAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919925763</pqid></control><display><type>article</type><title>Scuffing mechanism of near-surface material during lubricated severe sliding contact</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Ajayi, O.O. ; Lorenzo-Martin, C. ; Erck, R.A. ; Fenske, G.R.</creator><creatorcontrib>Ajayi, O.O. ; Lorenzo-Martin, C. ; Erck, R.A. ; Fenske, G.R.</creatorcontrib><description>Scuffing, defined as a sudden catastrophic failure of lubricated sliding contact, is one of the least understood tribological failure processes, in spite of its great technological significance. It is usually accompanied by a large sudden rise in friction, contact temperature, and noise. Occurrence of scuffing results in loss of surface integrity and functionality of the tribological components. Although extensive phenomenological studies have been conducted on scuffing because of its implication regarding machine-element reliability, the basic mechanism of the failure process is still not well understood. Consequently, prediction and sometimes prevention of scuffing failure are difficult. Based on the recent observation of microstructural changes accompanying scuffing failure and various other phenomenological observations, a scuffing mechanism is proposed that involves adiabatic shear instability in the near-surface material at the sliding contact interface. Localized shear instability occurs when the rate of thermal softening due to the heat of plastic deformation exceeds the rate of work hardening—this is scuffing initiation. Propagation of scuffing to final catastrophic failure is determined by a balance between heat generation and heat dissipation. If the rate of heat generation by more plastic deformation exceeds the rate of heat dissipation, scuffing propagates; otherwise, the scuffing process is quenched. Once validated, this proposed mechanism will facilitate the prediction of scuffing based on material properties. It will also provide a mechanism-based strategy for scuffing failure prevention in tribological components.</description><identifier>ISSN: 0043-1648</identifier><identifier>EISSN: 1873-2577</identifier><identifier>DOI: 10.1016/j.wear.2010.12.086</identifier><identifier>CODEN: WEARAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adiabatic shear ; Applied sciences ; Cooling ; Exact sciences and technology ; Failure ; Fracture mechanics (crack, fatigue, damage...) ; Friction ; Friction, wear, lubrication ; Fundamental areas of phenomenology (including applications) ; Heat generation ; Inelasticity (thermoplasticity, viscoplasticity...) ; Machine components ; Mechanical engineering. Machine design ; Physics ; Plastic deformation ; Scuffing ; Shear instability ; Sliding contact ; Solid mechanics ; Structural and continuum mechanics ; Thermal dissipation ; Tribology</subject><ispartof>Wear, 2011-07, Vol.271 (9), p.1750-1753</ispartof><rights>2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-dc8b532da8a5e5d581152e2c771fd2186cce3dae868256ea52956dee4f41d3403</citedby><cites>FETCH-LOGICAL-c428t-dc8b532da8a5e5d581152e2c771fd2186cce3dae868256ea52956dee4f41d3403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.wear.2010.12.086$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,3539,23913,23914,25123,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24481537$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ajayi, O.O.</creatorcontrib><creatorcontrib>Lorenzo-Martin, C.</creatorcontrib><creatorcontrib>Erck, R.A.</creatorcontrib><creatorcontrib>Fenske, G.R.</creatorcontrib><title>Scuffing mechanism of near-surface material during lubricated severe sliding contact</title><title>Wear</title><description>Scuffing, defined as a sudden catastrophic failure of lubricated sliding contact, is one of the least understood tribological failure processes, in spite of its great technological significance. It is usually accompanied by a large sudden rise in friction, contact temperature, and noise. Occurrence of scuffing results in loss of surface integrity and functionality of the tribological components. Although extensive phenomenological studies have been conducted on scuffing because of its implication regarding machine-element reliability, the basic mechanism of the failure process is still not well understood. Consequently, prediction and sometimes prevention of scuffing failure are difficult. Based on the recent observation of microstructural changes accompanying scuffing failure and various other phenomenological observations, a scuffing mechanism is proposed that involves adiabatic shear instability in the near-surface material at the sliding contact interface. Localized shear instability occurs when the rate of thermal softening due to the heat of plastic deformation exceeds the rate of work hardening—this is scuffing initiation. Propagation of scuffing to final catastrophic failure is determined by a balance between heat generation and heat dissipation. If the rate of heat generation by more plastic deformation exceeds the rate of heat dissipation, scuffing propagates; otherwise, the scuffing process is quenched. Once validated, this proposed mechanism will facilitate the prediction of scuffing based on material properties. It will also provide a mechanism-based strategy for scuffing failure prevention in tribological components.</description><subject>Adiabatic shear</subject><subject>Applied sciences</subject><subject>Cooling</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Friction</subject><subject>Friction, wear, lubrication</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat generation</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Machine components</subject><subject>Mechanical engineering. Machine design</subject><subject>Physics</subject><subject>Plastic deformation</subject><subject>Scuffing</subject><subject>Shear instability</subject><subject>Sliding contact</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Thermal dissipation</subject><subject>Tribology</subject><issn>0043-1648</issn><issn>1873-2577</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKe9iKddk-wmm4IXKX5BwYP1HNLJRFP2oya7Ff-9WVo8ehp455l3Zl5CrhgtGGXydlN8owkFp5PAC6rkEZkxVZc5F3V9TGaUVmXOZKVOyVmMG0opmws5I6s3GJ3z3UfWInyazsc2613WJbc8jsEZwKw1AwZvmsyOYSKbcR08JNFmEXcYMIuNt1MH-m4wMFyQE2eaiJeHek7eHx9Wi-d8-fr0srhf5lBxNeQW1FqU3BplBAorFGOCI4e6Zs5ypiQAltagkooLiUbwdLJFrFzFbFnR8pzc7H23of8aMQ669RGwaUyH_Rj1nM3n6X9ZJpLvSQh9jAGd3gbfmvCjGdVTgnqjpwT1lKBmXKcE09D1wd5EMI0LpgMf_yZ5VSkmyjpxd3sO0687j0FH8NgBWh8QBm17_9-aXz6ViAE</recordid><startdate>20110729</startdate><enddate>20110729</enddate><creator>Ajayi, O.O.</creator><creator>Lorenzo-Martin, C.</creator><creator>Erck, R.A.</creator><creator>Fenske, G.R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110729</creationdate><title>Scuffing mechanism of near-surface material during lubricated severe sliding contact</title><author>Ajayi, O.O. ; Lorenzo-Martin, C. ; Erck, R.A. ; Fenske, G.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-dc8b532da8a5e5d581152e2c771fd2186cce3dae868256ea52956dee4f41d3403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adiabatic shear</topic><topic>Applied sciences</topic><topic>Cooling</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Friction</topic><topic>Friction, wear, lubrication</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat generation</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Machine components</topic><topic>Mechanical engineering. Machine design</topic><topic>Physics</topic><topic>Plastic deformation</topic><topic>Scuffing</topic><topic>Shear instability</topic><topic>Sliding contact</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Thermal dissipation</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ajayi, O.O.</creatorcontrib><creatorcontrib>Lorenzo-Martin, C.</creatorcontrib><creatorcontrib>Erck, R.A.</creatorcontrib><creatorcontrib>Fenske, G.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Wear</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ajayi, O.O.</au><au>Lorenzo-Martin, C.</au><au>Erck, R.A.</au><au>Fenske, G.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scuffing mechanism of near-surface material during lubricated severe sliding contact</atitle><jtitle>Wear</jtitle><date>2011-07-29</date><risdate>2011</risdate><volume>271</volume><issue>9</issue><spage>1750</spage><epage>1753</epage><pages>1750-1753</pages><issn>0043-1648</issn><eissn>1873-2577</eissn><coden>WEARAH</coden><abstract>Scuffing, defined as a sudden catastrophic failure of lubricated sliding contact, is one of the least understood tribological failure processes, in spite of its great technological significance. It is usually accompanied by a large sudden rise in friction, contact temperature, and noise. Occurrence of scuffing results in loss of surface integrity and functionality of the tribological components. Although extensive phenomenological studies have been conducted on scuffing because of its implication regarding machine-element reliability, the basic mechanism of the failure process is still not well understood. Consequently, prediction and sometimes prevention of scuffing failure are difficult. Based on the recent observation of microstructural changes accompanying scuffing failure and various other phenomenological observations, a scuffing mechanism is proposed that involves adiabatic shear instability in the near-surface material at the sliding contact interface. Localized shear instability occurs when the rate of thermal softening due to the heat of plastic deformation exceeds the rate of work hardening—this is scuffing initiation. Propagation of scuffing to final catastrophic failure is determined by a balance between heat generation and heat dissipation. If the rate of heat generation by more plastic deformation exceeds the rate of heat dissipation, scuffing propagates; otherwise, the scuffing process is quenched. Once validated, this proposed mechanism will facilitate the prediction of scuffing based on material properties. It will also provide a mechanism-based strategy for scuffing failure prevention in tribological components.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wear.2010.12.086</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1648 |
ispartof | Wear, 2011-07, Vol.271 (9), p.1750-1753 |
issn | 0043-1648 1873-2577 |
language | eng |
recordid | cdi_proquest_miscellaneous_919925763 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Adiabatic shear Applied sciences Cooling Exact sciences and technology Failure Fracture mechanics (crack, fatigue, damage...) Friction Friction, wear, lubrication Fundamental areas of phenomenology (including applications) Heat generation Inelasticity (thermoplasticity, viscoplasticity...) Machine components Mechanical engineering. Machine design Physics Plastic deformation Scuffing Shear instability Sliding contact Solid mechanics Structural and continuum mechanics Thermal dissipation Tribology |
title | Scuffing mechanism of near-surface material during lubricated severe sliding contact |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scuffing%20mechanism%20of%20near-surface%20material%20during%20lubricated%20severe%20sliding%20contact&rft.jtitle=Wear&rft.au=Ajayi,%20O.O.&rft.date=2011-07-29&rft.volume=271&rft.issue=9&rft.spage=1750&rft.epage=1753&rft.pages=1750-1753&rft.issn=0043-1648&rft.eissn=1873-2577&rft.coden=WEARAH&rft_id=info:doi/10.1016/j.wear.2010.12.086&rft_dat=%3Cproquest_cross%3E919925763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919925763&rft_id=info:pmid/&rft_els_id=S0043164811003516&rfr_iscdi=true |