Fixed points of involutive interval-valued negations

Different from involutive negations on [0, 1], the fixed points of an involutive interval-valued negation are uncountable. In this paper, all the fixed points of an involutive interval-valued negation are characterized. Also, it is proved that an involutive interval-valued negation is uniquely deter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuzzy sets and systems 2011-11, Vol.182 (1), p.110-118
Hauptverfasser: Wu, Jiachao, Luo, Maokang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 1
container_start_page 110
container_title Fuzzy sets and systems
container_volume 182
creator Wu, Jiachao
Luo, Maokang
description Different from involutive negations on [0, 1], the fixed points of an involutive interval-valued negation are uncountable. In this paper, all the fixed points of an involutive interval-valued negation are characterized. Also, it is proved that an involutive interval-valued negation is uniquely determined by its fixed points. Moreover, a constructive representation of involutive interval-valued negations is obtained. ► All the fixed points of an involutive interval-valued negation are characterized. ► The definitions of the imaginary fixed points and of the fixed point function are given. ► An involutive interval-valued negation is characterized by its fixed points. ► As an application of the fixed point function, a representative theorem of an involutive interval-valued negation is constructed.
doi_str_mv 10.1016/j.fss.2011.05.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919921498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165011411002739</els_id><sourcerecordid>919921498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-79ad26f85d362e71815c08efc68d86bae77a44dc3cb0834a7b1e0558da68cbbc3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKs_wFsv4mnXTHaTTfAkYlUoeNFzyCazkrLd1GS36L83pcWjh2EG5ntvmEfINdASKIi7ddmlVDIKUFJeUqZOyAxkwwohKZySWWZ4kbf1OblIaU1pngWdkXrpv9EttsEPY1qEbuGHXein0e8wjyPGnemLXFOGBvw0ow9DuiRnnekTXh37nHwsn94fX4rV2_Pr48OqsBVXY9Eo45joJHeVYNiABG6pxM4K6aRoDTaNqWtnK9tSWdWmaQEp59IZIW3b2mpObg--2xi-Jkyj3vhkse_NgGFKWoFSDGolMwkH0saQUsROb6PfmPijgep9QHqtc0B6H5CmXOeAsubm6G6SNX0XzWB9-hOymgNTfM_dHzjMr-48Rp2sx8Gi8xHtqF3w_1z5Bdfwe0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919921498</pqid></control><display><type>article</type><title>Fixed points of involutive interval-valued negations</title><source>Elsevier ScienceDirect Journals</source><creator>Wu, Jiachao ; Luo, Maokang</creator><creatorcontrib>Wu, Jiachao ; Luo, Maokang</creatorcontrib><description>Different from involutive negations on [0, 1], the fixed points of an involutive interval-valued negation are uncountable. In this paper, all the fixed points of an involutive interval-valued negation are characterized. Also, it is proved that an involutive interval-valued negation is uniquely determined by its fixed points. Moreover, a constructive representation of involutive interval-valued negations is obtained. ► All the fixed points of an involutive interval-valued negation are characterized. ► The definitions of the imaginary fixed points and of the fixed point function are given. ► An involutive interval-valued negation is characterized by its fixed points. ► As an application of the fixed point function, a representative theorem of an involutive interval-valued negation is constructed.</description><identifier>ISSN: 0165-0114</identifier><identifier>EISSN: 1872-6801</identifier><identifier>DOI: 10.1016/j.fss.2011.05.029</identifier><identifier>CODEN: FSSYD8</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Circuit properties ; Computer science; control theory; systems ; Construction ; Digital circuits ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Fixed points ; Fuzzy set theory ; Global analysis, analysis on manifolds ; Information, signal and communications theory ; Interval-valued negations ; Involutive interval-valued negations ; Mathematical methods ; Mathematics ; Miscellaneous ; Representations ; Sciences and techniques of general use ; Telecommunications and information theory ; Theoretical computing ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Fuzzy sets and systems, 2011-11, Vol.182 (1), p.110-118</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-79ad26f85d362e71815c08efc68d86bae77a44dc3cb0834a7b1e0558da68cbbc3</citedby><cites>FETCH-LOGICAL-c359t-79ad26f85d362e71815c08efc68d86bae77a44dc3cb0834a7b1e0558da68cbbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165011411002739$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24512959$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jiachao</creatorcontrib><creatorcontrib>Luo, Maokang</creatorcontrib><title>Fixed points of involutive interval-valued negations</title><title>Fuzzy sets and systems</title><description>Different from involutive negations on [0, 1], the fixed points of an involutive interval-valued negation are uncountable. In this paper, all the fixed points of an involutive interval-valued negation are characterized. Also, it is proved that an involutive interval-valued negation is uniquely determined by its fixed points. Moreover, a constructive representation of involutive interval-valued negations is obtained. ► All the fixed points of an involutive interval-valued negation are characterized. ► The definitions of the imaginary fixed points and of the fixed point function are given. ► An involutive interval-valued negation is characterized by its fixed points. ► As an application of the fixed point function, a representative theorem of an involutive interval-valued negation is constructed.</description><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>Computer science; control theory; systems</subject><subject>Construction</subject><subject>Digital circuits</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fixed points</subject><subject>Fuzzy set theory</subject><subject>Global analysis, analysis on manifolds</subject><subject>Information, signal and communications theory</subject><subject>Interval-valued negations</subject><subject>Involutive interval-valued negations</subject><subject>Mathematical methods</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Representations</subject><subject>Sciences and techniques of general use</subject><subject>Telecommunications and information theory</subject><subject>Theoretical computing</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0165-0114</issn><issn>1872-6801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKs_wFsv4mnXTHaTTfAkYlUoeNFzyCazkrLd1GS36L83pcWjh2EG5ntvmEfINdASKIi7ddmlVDIKUFJeUqZOyAxkwwohKZySWWZ4kbf1OblIaU1pngWdkXrpv9EttsEPY1qEbuGHXein0e8wjyPGnemLXFOGBvw0ow9DuiRnnekTXh37nHwsn94fX4rV2_Pr48OqsBVXY9Eo45joJHeVYNiABG6pxM4K6aRoDTaNqWtnK9tSWdWmaQEp59IZIW3b2mpObg--2xi-Jkyj3vhkse_NgGFKWoFSDGolMwkH0saQUsROb6PfmPijgep9QHqtc0B6H5CmXOeAsubm6G6SNX0XzWB9-hOymgNTfM_dHzjMr-48Rp2sx8Gi8xHtqF3w_1z5Bdfwe0U</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Wu, Jiachao</creator><creator>Luo, Maokang</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111101</creationdate><title>Fixed points of involutive interval-valued negations</title><author>Wu, Jiachao ; Luo, Maokang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-79ad26f85d362e71815c08efc68d86bae77a44dc3cb0834a7b1e0558da68cbbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>Computer science; control theory; systems</topic><topic>Construction</topic><topic>Digital circuits</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fixed points</topic><topic>Fuzzy set theory</topic><topic>Global analysis, analysis on manifolds</topic><topic>Information, signal and communications theory</topic><topic>Interval-valued negations</topic><topic>Involutive interval-valued negations</topic><topic>Mathematical methods</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Representations</topic><topic>Sciences and techniques of general use</topic><topic>Telecommunications and information theory</topic><topic>Theoretical computing</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jiachao</creatorcontrib><creatorcontrib>Luo, Maokang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Fuzzy sets and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jiachao</au><au>Luo, Maokang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed points of involutive interval-valued negations</atitle><jtitle>Fuzzy sets and systems</jtitle><date>2011-11-01</date><risdate>2011</risdate><volume>182</volume><issue>1</issue><spage>110</spage><epage>118</epage><pages>110-118</pages><issn>0165-0114</issn><eissn>1872-6801</eissn><coden>FSSYD8</coden><abstract>Different from involutive negations on [0, 1], the fixed points of an involutive interval-valued negation are uncountable. In this paper, all the fixed points of an involutive interval-valued negation are characterized. Also, it is proved that an involutive interval-valued negation is uniquely determined by its fixed points. Moreover, a constructive representation of involutive interval-valued negations is obtained. ► All the fixed points of an involutive interval-valued negation are characterized. ► The definitions of the imaginary fixed points and of the fixed point function are given. ► An involutive interval-valued negation is characterized by its fixed points. ► As an application of the fixed point function, a representative theorem of an involutive interval-valued negation is constructed.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fss.2011.05.029</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-0114
ispartof Fuzzy sets and systems, 2011-11, Vol.182 (1), p.110-118
issn 0165-0114
1872-6801
language eng
recordid cdi_proquest_miscellaneous_919921498
source Elsevier ScienceDirect Journals
subjects Applied sciences
Circuit properties
Computer science
control theory
systems
Construction
Digital circuits
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
Fixed points
Fuzzy set theory
Global analysis, analysis on manifolds
Information, signal and communications theory
Interval-valued negations
Involutive interval-valued negations
Mathematical methods
Mathematics
Miscellaneous
Representations
Sciences and techniques of general use
Telecommunications and information theory
Theoretical computing
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Fixed points of involutive interval-valued negations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20points%20of%20involutive%20interval-valued%20negations&rft.jtitle=Fuzzy%20sets%20and%20systems&rft.au=Wu,%20Jiachao&rft.date=2011-11-01&rft.volume=182&rft.issue=1&rft.spage=110&rft.epage=118&rft.pages=110-118&rft.issn=0165-0114&rft.eissn=1872-6801&rft.coden=FSSYD8&rft_id=info:doi/10.1016/j.fss.2011.05.029&rft_dat=%3Cproquest_cross%3E919921498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919921498&rft_id=info:pmid/&rft_els_id=S0165011411002739&rfr_iscdi=true