Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods

► Critical point theory and variational methods are applied to investigate the second order impulsive differential equations. ► The conditions for the existence of multiple solutions are established. ► Main results extend the study, in the sense that we deal with a class of problems that is not cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2012, Vol.17 (1), p.426-432
Hauptverfasser: Xiao, Jing, Nieto, Juan J., Luo, Zhiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 432
container_issue 1
container_start_page 426
container_title Communications in nonlinear science & numerical simulation
container_volume 17
creator Xiao, Jing
Nieto, Juan J.
Luo, Zhiguo
description ► Critical point theory and variational methods are applied to investigate the second order impulsive differential equations. ► The conditions for the existence of multiple solutions are established. ► Main results extend the study, in the sense that we deal with a class of problems that is not considered in related papers. This paper uses critical point theory and variational methods to investigate the multiple solutions of boundary value problems for second order impulsive differential equations. The conditions for the existence of multiple solutions are established. An example is constructed to illustrate the proposed result.
doi_str_mv 10.1016/j.cnsns.2011.05.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919921014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570411002607</els_id><sourcerecordid>919921014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-e662320da9050c9e5d4ee285235c0e187bc2f4a04e932376199156b55b79a74c3</originalsourceid><addsrcrecordid>eNp90MtOxCAYBeDGaOL1Cdywc9UKtLTThQtjvCUaN7omDPzN_BMGOkBrfApfWcZx7QpCzkdyTlFcMloxytrrdaVddLHilLGKiooycVCcsEW3KDveNYf5TmlXio42x8VpjGuaVS-ak-L7dbIJR4sa0xfxA4neTgm9i2TwgTjvLDpQgUTQ3hnig4FAcDNONuIMxOAwQACXUFkC20nt7SemFfmTGeCc33dpGMEZcBrIjIrMKuAvyHYDaeVNPC-OBmUjXPydZ8XHw_373VP58vb4fHf7Uuq6FqmEtuU1p0b1VFDdgzANAF8IXgtNIRdfaj40ijbQ17zuWtb3TLRLIZZdr7pG12fF1f7fMfjtBDHJDUYN1ioHfoqyz4LnbZucrPdJHXyMAQY5Btyo8CUZlbv15Vr-ri9360sqZF4_q5u9glxiRggyatwVNxhAJ2k8_ut_ANbhkxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919921014</pqid></control><display><type>article</type><title>Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods</title><source>Elsevier ScienceDirect Journals</source><creator>Xiao, Jing ; Nieto, Juan J. ; Luo, Zhiguo</creator><creatorcontrib>Xiao, Jing ; Nieto, Juan J. ; Luo, Zhiguo</creatorcontrib><description>► Critical point theory and variational methods are applied to investigate the second order impulsive differential equations. ► The conditions for the existence of multiple solutions are established. ► Main results extend the study, in the sense that we deal with a class of problems that is not considered in related papers. This paper uses critical point theory and variational methods to investigate the multiple solutions of boundary value problems for second order impulsive differential equations. The conditions for the existence of multiple solutions are established. An example is constructed to illustrate the proposed result.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2011.05.015</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Boundary value problem with impulses ; Boundary value problems ; Computer simulation ; Critical point theory ; Derivatives ; Differential equations ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Variational methods</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2012, Vol.17 (1), p.426-432</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-e662320da9050c9e5d4ee285235c0e187bc2f4a04e932376199156b55b79a74c3</citedby><cites>FETCH-LOGICAL-c335t-e662320da9050c9e5d4ee285235c0e187bc2f4a04e932376199156b55b79a74c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1007570411002607$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Xiao, Jing</creatorcontrib><creatorcontrib>Nieto, Juan J.</creatorcontrib><creatorcontrib>Luo, Zhiguo</creatorcontrib><title>Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>► Critical point theory and variational methods are applied to investigate the second order impulsive differential equations. ► The conditions for the existence of multiple solutions are established. ► Main results extend the study, in the sense that we deal with a class of problems that is not considered in related papers. This paper uses critical point theory and variational methods to investigate the multiple solutions of boundary value problems for second order impulsive differential equations. The conditions for the existence of multiple solutions are established. An example is constructed to illustrate the proposed result.</description><subject>Boundary value problem with impulses</subject><subject>Boundary value problems</subject><subject>Computer simulation</subject><subject>Critical point theory</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Variational methods</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90MtOxCAYBeDGaOL1Cdywc9UKtLTThQtjvCUaN7omDPzN_BMGOkBrfApfWcZx7QpCzkdyTlFcMloxytrrdaVddLHilLGKiooycVCcsEW3KDveNYf5TmlXio42x8VpjGuaVS-ak-L7dbIJR4sa0xfxA4neTgm9i2TwgTjvLDpQgUTQ3hnig4FAcDNONuIMxOAwQACXUFkC20nt7SemFfmTGeCc33dpGMEZcBrIjIrMKuAvyHYDaeVNPC-OBmUjXPydZ8XHw_373VP58vb4fHf7Uuq6FqmEtuU1p0b1VFDdgzANAF8IXgtNIRdfaj40ijbQ17zuWtb3TLRLIZZdr7pG12fF1f7fMfjtBDHJDUYN1ioHfoqyz4LnbZucrPdJHXyMAQY5Btyo8CUZlbv15Vr-ri9360sqZF4_q5u9glxiRggyatwVNxhAJ2k8_ut_ANbhkxU</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Xiao, Jing</creator><creator>Nieto, Juan J.</creator><creator>Luo, Zhiguo</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2012</creationdate><title>Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods</title><author>Xiao, Jing ; Nieto, Juan J. ; Luo, Zhiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-e662320da9050c9e5d4ee285235c0e187bc2f4a04e932376199156b55b79a74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boundary value problem with impulses</topic><topic>Boundary value problems</topic><topic>Computer simulation</topic><topic>Critical point theory</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Jing</creatorcontrib><creatorcontrib>Nieto, Juan J.</creatorcontrib><creatorcontrib>Luo, Zhiguo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Jing</au><au>Nieto, Juan J.</au><au>Luo, Zhiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2012</date><risdate>2012</risdate><volume>17</volume><issue>1</issue><spage>426</spage><epage>432</epage><pages>426-432</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>► Critical point theory and variational methods are applied to investigate the second order impulsive differential equations. ► The conditions for the existence of multiple solutions are established. ► Main results extend the study, in the sense that we deal with a class of problems that is not considered in related papers. This paper uses critical point theory and variational methods to investigate the multiple solutions of boundary value problems for second order impulsive differential equations. The conditions for the existence of multiple solutions are established. An example is constructed to illustrate the proposed result.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2011.05.015</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2012, Vol.17 (1), p.426-432
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_miscellaneous_919921014
source Elsevier ScienceDirect Journals
subjects Boundary value problem with impulses
Boundary value problems
Computer simulation
Critical point theory
Derivatives
Differential equations
Mathematical analysis
Mathematical models
Nonlinearity
Variational methods
title Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicity%20of%20solutions%20for%20nonlinear%20second%20order%20impulsive%20differential%20equations%20with%20linear%20derivative%20dependence%20via%20variational%20methods&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Xiao,%20Jing&rft.date=2012&rft.volume=17&rft.issue=1&rft.spage=426&rft.epage=432&rft.pages=426-432&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2011.05.015&rft_dat=%3Cproquest_cross%3E919921014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919921014&rft_id=info:pmid/&rft_els_id=S1007570411002607&rfr_iscdi=true