Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods
► Critical point theory and variational methods are applied to investigate the second order impulsive differential equations. ► The conditions for the existence of multiple solutions are established. ► Main results extend the study, in the sense that we deal with a class of problems that is not cons...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2012, Vol.17 (1), p.426-432 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 432 |
---|---|
container_issue | 1 |
container_start_page | 426 |
container_title | Communications in nonlinear science & numerical simulation |
container_volume | 17 |
creator | Xiao, Jing Nieto, Juan J. Luo, Zhiguo |
description | ► Critical point theory and variational methods are applied to investigate the second order impulsive differential equations. ► The conditions for the existence of multiple solutions are established. ► Main results extend the study, in the sense that we deal with a class of problems that is not considered in related papers.
This paper uses critical point theory and variational methods to investigate the multiple solutions of boundary value problems for second order impulsive differential equations. The conditions for the existence of multiple solutions are established. An example is constructed to illustrate the proposed result. |
doi_str_mv | 10.1016/j.cnsns.2011.05.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919921014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570411002607</els_id><sourcerecordid>919921014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-e662320da9050c9e5d4ee285235c0e187bc2f4a04e932376199156b55b79a74c3</originalsourceid><addsrcrecordid>eNp90MtOxCAYBeDGaOL1Cdywc9UKtLTThQtjvCUaN7omDPzN_BMGOkBrfApfWcZx7QpCzkdyTlFcMloxytrrdaVddLHilLGKiooycVCcsEW3KDveNYf5TmlXio42x8VpjGuaVS-ak-L7dbIJR4sa0xfxA4neTgm9i2TwgTjvLDpQgUTQ3hnig4FAcDNONuIMxOAwQACXUFkC20nt7SemFfmTGeCc33dpGMEZcBrIjIrMKuAvyHYDaeVNPC-OBmUjXPydZ8XHw_373VP58vb4fHf7Uuq6FqmEtuU1p0b1VFDdgzANAF8IXgtNIRdfaj40ijbQ17zuWtb3TLRLIZZdr7pG12fF1f7fMfjtBDHJDUYN1ioHfoqyz4LnbZucrPdJHXyMAQY5Btyo8CUZlbv15Vr-ri9360sqZF4_q5u9glxiRggyatwVNxhAJ2k8_ut_ANbhkxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919921014</pqid></control><display><type>article</type><title>Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods</title><source>Elsevier ScienceDirect Journals</source><creator>Xiao, Jing ; Nieto, Juan J. ; Luo, Zhiguo</creator><creatorcontrib>Xiao, Jing ; Nieto, Juan J. ; Luo, Zhiguo</creatorcontrib><description>► Critical point theory and variational methods are applied to investigate the second order impulsive differential equations. ► The conditions for the existence of multiple solutions are established. ► Main results extend the study, in the sense that we deal with a class of problems that is not considered in related papers.
This paper uses critical point theory and variational methods to investigate the multiple solutions of boundary value problems for second order impulsive differential equations. The conditions for the existence of multiple solutions are established. An example is constructed to illustrate the proposed result.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2011.05.015</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Boundary value problem with impulses ; Boundary value problems ; Computer simulation ; Critical point theory ; Derivatives ; Differential equations ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Variational methods</subject><ispartof>Communications in nonlinear science & numerical simulation, 2012, Vol.17 (1), p.426-432</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-e662320da9050c9e5d4ee285235c0e187bc2f4a04e932376199156b55b79a74c3</citedby><cites>FETCH-LOGICAL-c335t-e662320da9050c9e5d4ee285235c0e187bc2f4a04e932376199156b55b79a74c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1007570411002607$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Xiao, Jing</creatorcontrib><creatorcontrib>Nieto, Juan J.</creatorcontrib><creatorcontrib>Luo, Zhiguo</creatorcontrib><title>Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods</title><title>Communications in nonlinear science & numerical simulation</title><description>► Critical point theory and variational methods are applied to investigate the second order impulsive differential equations. ► The conditions for the existence of multiple solutions are established. ► Main results extend the study, in the sense that we deal with a class of problems that is not considered in related papers.
This paper uses critical point theory and variational methods to investigate the multiple solutions of boundary value problems for second order impulsive differential equations. The conditions for the existence of multiple solutions are established. An example is constructed to illustrate the proposed result.</description><subject>Boundary value problem with impulses</subject><subject>Boundary value problems</subject><subject>Computer simulation</subject><subject>Critical point theory</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Variational methods</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90MtOxCAYBeDGaOL1Cdywc9UKtLTThQtjvCUaN7omDPzN_BMGOkBrfApfWcZx7QpCzkdyTlFcMloxytrrdaVddLHilLGKiooycVCcsEW3KDveNYf5TmlXio42x8VpjGuaVS-ak-L7dbIJR4sa0xfxA4neTgm9i2TwgTjvLDpQgUTQ3hnig4FAcDNONuIMxOAwQACXUFkC20nt7SemFfmTGeCc33dpGMEZcBrIjIrMKuAvyHYDaeVNPC-OBmUjXPydZ8XHw_373VP58vb4fHf7Uuq6FqmEtuU1p0b1VFDdgzANAF8IXgtNIRdfaj40ijbQ17zuWtb3TLRLIZZdr7pG12fF1f7fMfjtBDHJDUYN1ioHfoqyz4LnbZucrPdJHXyMAQY5Btyo8CUZlbv15Vr-ri9360sqZF4_q5u9glxiRggyatwVNxhAJ2k8_ut_ANbhkxU</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Xiao, Jing</creator><creator>Nieto, Juan J.</creator><creator>Luo, Zhiguo</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2012</creationdate><title>Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods</title><author>Xiao, Jing ; Nieto, Juan J. ; Luo, Zhiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-e662320da9050c9e5d4ee285235c0e187bc2f4a04e932376199156b55b79a74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boundary value problem with impulses</topic><topic>Boundary value problems</topic><topic>Computer simulation</topic><topic>Critical point theory</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Jing</creatorcontrib><creatorcontrib>Nieto, Juan J.</creatorcontrib><creatorcontrib>Luo, Zhiguo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in nonlinear science & numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Jing</au><au>Nieto, Juan J.</au><au>Luo, Zhiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods</atitle><jtitle>Communications in nonlinear science & numerical simulation</jtitle><date>2012</date><risdate>2012</risdate><volume>17</volume><issue>1</issue><spage>426</spage><epage>432</epage><pages>426-432</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>► Critical point theory and variational methods are applied to investigate the second order impulsive differential equations. ► The conditions for the existence of multiple solutions are established. ► Main results extend the study, in the sense that we deal with a class of problems that is not considered in related papers.
This paper uses critical point theory and variational methods to investigate the multiple solutions of boundary value problems for second order impulsive differential equations. The conditions for the existence of multiple solutions are established. An example is constructed to illustrate the proposed result.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2011.05.015</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-5704 |
ispartof | Communications in nonlinear science & numerical simulation, 2012, Vol.17 (1), p.426-432 |
issn | 1007-5704 1878-7274 |
language | eng |
recordid | cdi_proquest_miscellaneous_919921014 |
source | Elsevier ScienceDirect Journals |
subjects | Boundary value problem with impulses Boundary value problems Computer simulation Critical point theory Derivatives Differential equations Mathematical analysis Mathematical models Nonlinearity Variational methods |
title | Multiplicity of solutions for nonlinear second order impulsive differential equations with linear derivative dependence via variational methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicity%20of%20solutions%20for%20nonlinear%20second%20order%20impulsive%20differential%20equations%20with%20linear%20derivative%20dependence%20via%20variational%20methods&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Xiao,%20Jing&rft.date=2012&rft.volume=17&rft.issue=1&rft.spage=426&rft.epage=432&rft.pages=426-432&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2011.05.015&rft_dat=%3Cproquest_cross%3E919921014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919921014&rft_id=info:pmid/&rft_els_id=S1007570411002607&rfr_iscdi=true |