Efficient algorithms for consensus string problems minimizing both distance sum and radius

The consensus (string) problem is finding a representative string, called a consensus, of a given set S of strings. In this paper we deal with consensus problems considering both distance sum and radius, where the distance sum is the sum of (Hamming) distances from the strings in S to the consensus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2011-09, Vol.412 (39), p.5239-5246
Hauptverfasser: Amir, Amihood, Landau, Gad M., Na, Joong Chae, Park, Heejin, Park, Kunsoo, Sim, Jeong Seop
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5246
container_issue 39
container_start_page 5239
container_title Theoretical computer science
container_volume 412
creator Amir, Amihood
Landau, Gad M.
Na, Joong Chae
Park, Heejin
Park, Kunsoo
Sim, Jeong Seop
description The consensus (string) problem is finding a representative string, called a consensus, of a given set S of strings. In this paper we deal with consensus problems considering both distance sum and radius, where the distance sum is the sum of (Hamming) distances from the strings in S to the consensus and the radius is the longest (Hamming) distance from the strings in S to the consensus. Although there have been results considering either distance sum or radius, there have been no results considering both, to the best of our knowledge. We present the first algorithms for two consensus problems considering both distance sum and radius for three strings: one problem is to find an optimal consensus minimizing both distance sum and radius. The other problem is to find a bounded consensus such that the distance sum is at most s and the radius is at most r for given constants s and r . Our algorithms are based on characterization of the lower bounds of distance sum and radius, and thus they solve the problems efficiently. Both algorithms run in linear time.
doi_str_mv 10.1016/j.tcs.2011.05.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919920827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397511004439</els_id><sourcerecordid>919920827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8526b00ef10eb8013eb4bfd0a1d5df09340a9552d8a951663a9da693769f2d4e3</originalsourceid><addsrcrecordid>eNp9kLtqHTEQhkVIICe2H8CdmpBq1yNppV3hyhgnNhjSxE0aodXF1mEvjkYbiJ_eOhyT0tP8MPPP7SPknEHLgKmLfVscthwYa0G2ILoPZMeGXjec6-4j2YGArhG6l5_JF8Q91JC92pHfNzEml8JSqJ0e15zK04w0rpm6dcGw4IYUS07LI33O6ziFWp3Tkub0csiNa3miPmGxiwsUt5naxdNsfdrwlHyKdsJw9qYn5OH7za_r2-b-54-766v7xgmpSzNIrkaAEBmEcQAmwtiN0YNlXvoIWnRgtZTcD1WYUsJqb5UWvdKR-y6IE_LtOLce-GcLWMyc0IVpsktYNzSaac1h4H11sqPT5RUxh2iec5pt_mcYmANGszcVozlgNCBNxVh7vr5Nt-jsFHP9NOH_Rt51SvNeVd_l0Rfqq39TyAYPWF3wKQdXjF_TO1teAVXJiQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919920827</pqid></control><display><type>article</type><title>Efficient algorithms for consensus string problems minimizing both distance sum and radius</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Amir, Amihood ; Landau, Gad M. ; Na, Joong Chae ; Park, Heejin ; Park, Kunsoo ; Sim, Jeong Seop</creator><creatorcontrib>Amir, Amihood ; Landau, Gad M. ; Na, Joong Chae ; Park, Heejin ; Park, Kunsoo ; Sim, Jeong Seop</creatorcontrib><description>The consensus (string) problem is finding a representative string, called a consensus, of a given set S of strings. In this paper we deal with consensus problems considering both distance sum and radius, where the distance sum is the sum of (Hamming) distances from the strings in S to the consensus and the radius is the longest (Hamming) distance from the strings in S to the consensus. Although there have been results considering either distance sum or radius, there have been no results considering both, to the best of our knowledge. We present the first algorithms for two consensus problems considering both distance sum and radius for three strings: one problem is to find an optimal consensus minimizing both distance sum and radius. The other problem is to find a bounded consensus such that the distance sum is at most s and the radius is at most r for given constants s and r . Our algorithms are based on characterization of the lower bounds of distance sum and radius, and thus they solve the problems efficiently. Both algorithms run in linear time.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2011.05.034</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Consensus strings ; Constants ; Distance sum ; Exact sciences and technology ; Learning and adaptive systems ; Lower bounds ; Miscellaneous ; Multiple alignments ; Optimization ; Radius ; Strings ; Theoretical computing</subject><ispartof>Theoretical computer science, 2011-09, Vol.412 (39), p.5239-5246</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8526b00ef10eb8013eb4bfd0a1d5df09340a9552d8a951663a9da693769f2d4e3</citedby><cites>FETCH-LOGICAL-c359t-8526b00ef10eb8013eb4bfd0a1d5df09340a9552d8a951663a9da693769f2d4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304397511004439$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24469276$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Amir, Amihood</creatorcontrib><creatorcontrib>Landau, Gad M.</creatorcontrib><creatorcontrib>Na, Joong Chae</creatorcontrib><creatorcontrib>Park, Heejin</creatorcontrib><creatorcontrib>Park, Kunsoo</creatorcontrib><creatorcontrib>Sim, Jeong Seop</creatorcontrib><title>Efficient algorithms for consensus string problems minimizing both distance sum and radius</title><title>Theoretical computer science</title><description>The consensus (string) problem is finding a representative string, called a consensus, of a given set S of strings. In this paper we deal with consensus problems considering both distance sum and radius, where the distance sum is the sum of (Hamming) distances from the strings in S to the consensus and the radius is the longest (Hamming) distance from the strings in S to the consensus. Although there have been results considering either distance sum or radius, there have been no results considering both, to the best of our knowledge. We present the first algorithms for two consensus problems considering both distance sum and radius for three strings: one problem is to find an optimal consensus minimizing both distance sum and radius. The other problem is to find a bounded consensus such that the distance sum is at most s and the radius is at most r for given constants s and r . Our algorithms are based on characterization of the lower bounds of distance sum and radius, and thus they solve the problems efficiently. Both algorithms run in linear time.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Consensus strings</subject><subject>Constants</subject><subject>Distance sum</subject><subject>Exact sciences and technology</subject><subject>Learning and adaptive systems</subject><subject>Lower bounds</subject><subject>Miscellaneous</subject><subject>Multiple alignments</subject><subject>Optimization</subject><subject>Radius</subject><subject>Strings</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kLtqHTEQhkVIICe2H8CdmpBq1yNppV3hyhgnNhjSxE0aodXF1mEvjkYbiJ_eOhyT0tP8MPPP7SPknEHLgKmLfVscthwYa0G2ILoPZMeGXjec6-4j2YGArhG6l5_JF8Q91JC92pHfNzEml8JSqJ0e15zK04w0rpm6dcGw4IYUS07LI33O6ziFWp3Tkub0csiNa3miPmGxiwsUt5naxdNsfdrwlHyKdsJw9qYn5OH7za_r2-b-54-766v7xgmpSzNIrkaAEBmEcQAmwtiN0YNlXvoIWnRgtZTcD1WYUsJqb5UWvdKR-y6IE_LtOLce-GcLWMyc0IVpsktYNzSaac1h4H11sqPT5RUxh2iec5pt_mcYmANGszcVozlgNCBNxVh7vr5Nt-jsFHP9NOH_Rt51SvNeVd_l0Rfqq39TyAYPWF3wKQdXjF_TO1teAVXJiQI</recordid><startdate>20110909</startdate><enddate>20110909</enddate><creator>Amir, Amihood</creator><creator>Landau, Gad M.</creator><creator>Na, Joong Chae</creator><creator>Park, Heejin</creator><creator>Park, Kunsoo</creator><creator>Sim, Jeong Seop</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110909</creationdate><title>Efficient algorithms for consensus string problems minimizing both distance sum and radius</title><author>Amir, Amihood ; Landau, Gad M. ; Na, Joong Chae ; Park, Heejin ; Park, Kunsoo ; Sim, Jeong Seop</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8526b00ef10eb8013eb4bfd0a1d5df09340a9552d8a951663a9da693769f2d4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Consensus strings</topic><topic>Constants</topic><topic>Distance sum</topic><topic>Exact sciences and technology</topic><topic>Learning and adaptive systems</topic><topic>Lower bounds</topic><topic>Miscellaneous</topic><topic>Multiple alignments</topic><topic>Optimization</topic><topic>Radius</topic><topic>Strings</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amir, Amihood</creatorcontrib><creatorcontrib>Landau, Gad M.</creatorcontrib><creatorcontrib>Na, Joong Chae</creatorcontrib><creatorcontrib>Park, Heejin</creatorcontrib><creatorcontrib>Park, Kunsoo</creatorcontrib><creatorcontrib>Sim, Jeong Seop</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amir, Amihood</au><au>Landau, Gad M.</au><au>Na, Joong Chae</au><au>Park, Heejin</au><au>Park, Kunsoo</au><au>Sim, Jeong Seop</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient algorithms for consensus string problems minimizing both distance sum and radius</atitle><jtitle>Theoretical computer science</jtitle><date>2011-09-09</date><risdate>2011</risdate><volume>412</volume><issue>39</issue><spage>5239</spage><epage>5246</epage><pages>5239-5246</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>The consensus (string) problem is finding a representative string, called a consensus, of a given set S of strings. In this paper we deal with consensus problems considering both distance sum and radius, where the distance sum is the sum of (Hamming) distances from the strings in S to the consensus and the radius is the longest (Hamming) distance from the strings in S to the consensus. Although there have been results considering either distance sum or radius, there have been no results considering both, to the best of our knowledge. We present the first algorithms for two consensus problems considering both distance sum and radius for three strings: one problem is to find an optimal consensus minimizing both distance sum and radius. The other problem is to find a bounded consensus such that the distance sum is at most s and the radius is at most r for given constants s and r . Our algorithms are based on characterization of the lower bounds of distance sum and radius, and thus they solve the problems efficiently. Both algorithms run in linear time.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2011.05.034</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2011-09, Vol.412 (39), p.5239-5246
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_919920827
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Consensus strings
Constants
Distance sum
Exact sciences and technology
Learning and adaptive systems
Lower bounds
Miscellaneous
Multiple alignments
Optimization
Radius
Strings
Theoretical computing
title Efficient algorithms for consensus string problems minimizing both distance sum and radius
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20algorithms%20for%20consensus%20string%20problems%20minimizing%20both%20distance%20sum%20and%20radius&rft.jtitle=Theoretical%20computer%20science&rft.au=Amir,%20Amihood&rft.date=2011-09-09&rft.volume=412&rft.issue=39&rft.spage=5239&rft.epage=5246&rft.pages=5239-5246&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2011.05.034&rft_dat=%3Cproquest_cross%3E919920827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919920827&rft_id=info:pmid/&rft_els_id=S0304397511004439&rfr_iscdi=true