Impact of Hot Carriers on nMOSFET Variability in 45- and 65-nm CMOS Technologies

This paper examines the impact of hot carriers (HCs) on n-channel metal-oxide-semiconductor (MOS) field-effect transistor mismatch across the 45- and 65-nm complementary MOS technology generations. The reported statistical analysis is based on a large overall sample population of about 1000 transist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2011-08, Vol.58 (8), p.2347-2353
Hauptverfasser: Magnone, P., Crupi, F., Wils, N., Jain, R., Tuinhout, H., Andricciola, P., Giusi, G., Fiegna, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2353
container_issue 8
container_start_page 2347
container_title IEEE transactions on electron devices
container_volume 58
creator Magnone, P.
Crupi, F.
Wils, N.
Jain, R.
Tuinhout, H.
Andricciola, P.
Giusi, G.
Fiegna, C.
description This paper examines the impact of hot carriers (HCs) on n-channel metal-oxide-semiconductor (MOS) field-effect transistor mismatch across the 45- and 65-nm complementary MOS technology generations. The reported statistical analysis is based on a large overall sample population of about 1000 transistors. HC stress introduces a source of variability in device electrical parameters due to the randomly generated charge traps in the gate dielectric or at the substrate/dielectric interface. The evolution of the threshold-voltage mismatch during an HC stress is well modeled by assuming a Poisson distribution of the induced charge traps with a nonuniform generation along the channel. Once the evolution of the HC-induced VT shift is known, a single parameter is able to accurately describe the evolution of the HC-induced VT variability. This parameter is independent of the stress time and stress bias voltage. The HC stress causes a significantly larger degradation in the subthreshold slope variability, compared to threshold voltage variability for both investigated technology nodes.
doi_str_mv 10.1109/TED.2011.2156414
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_919920038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5934400</ieee_id><sourcerecordid>919920038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-3d01760c131dc36b53b80924e42722d169327d808880ac7b889f3fc21608b2c73</originalsourceid><addsrcrecordid>eNpdkEtLAzEURoMoWKt7wU1w42rqzWMyyVLG-oBKBavbkMlkNDKd1GS68N-bUnHh6nLhfPdxEDonMCME1PVqfjujQMiMklJwwg_QhJRlVSjBxSGaABBZKCbZMTpJ6TO3gnM6Qc-P642xIw4dfggjrk2M3sWEw4CHp-XL3XyF30z0pvG9H7-xHzAvC2yGFouyGNa4zhBeOfsxhD68e5dO0VFn-uTOfusUveYh9UOxWN4_1jeLwjIpx4K1QCoBljDSWiaakjUSFOWO04rSlgjFaNVKkFKCsVUjpepYZykRIBtqKzZFV_u5mxi-ti6Neu2TdX1vBhe2SSuiFAXIH0_R5T_yM2zjkI_TslLAGAeVIdhDNoaUouv0Jvq1id-agN4J1lmw3gnWv4Jz5GIf8c65P7xUjPO89wcOtnG5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879033409</pqid></control><display><type>article</type><title>Impact of Hot Carriers on nMOSFET Variability in 45- and 65-nm CMOS Technologies</title><source>IEEE Electronic Library (IEL)</source><creator>Magnone, P. ; Crupi, F. ; Wils, N. ; Jain, R. ; Tuinhout, H. ; Andricciola, P. ; Giusi, G. ; Fiegna, C.</creator><creatorcontrib>Magnone, P. ; Crupi, F. ; Wils, N. ; Jain, R. ; Tuinhout, H. ; Andricciola, P. ; Giusi, G. ; Fiegna, C.</creatorcontrib><description>This paper examines the impact of hot carriers (HCs) on n-channel metal-oxide-semiconductor (MOS) field-effect transistor mismatch across the 45- and 65-nm complementary MOS technology generations. The reported statistical analysis is based on a large overall sample population of about 1000 transistors. HC stress introduces a source of variability in device electrical parameters due to the randomly generated charge traps in the gate dielectric or at the substrate/dielectric interface. The evolution of the threshold-voltage mismatch during an HC stress is well modeled by assuming a Poisson distribution of the induced charge traps with a nonuniform generation along the channel. Once the evolution of the HC-induced VT shift is known, a single parameter is able to accurately describe the evolution of the HC-induced VT variability. This parameter is independent of the stress time and stress bias voltage. The HC stress causes a significantly larger degradation in the subthreshold slope variability, compared to threshold voltage variability for both investigated technology nodes.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2011.2156414</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Carriers ; Charge ; CMOS integrated circuits ; CMOS technology ; Devices ; Electric charge ; Evolution ; Hot carrier (HC) ; Logic gates ; Mathematical models ; metal-oxide-semiconductor field-effect transistor (MOSFET) ; mismatch ; MOSFET circuits ; Semiconductor device modeling ; Statistical analysis ; Stress ; Stresses ; Studies ; subthreshold slope ; threshold voltage ; Transistors ; variability</subject><ispartof>IEEE transactions on electron devices, 2011-08, Vol.58 (8), p.2347-2353</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-3d01760c131dc36b53b80924e42722d169327d808880ac7b889f3fc21608b2c73</citedby><cites>FETCH-LOGICAL-c388t-3d01760c131dc36b53b80924e42722d169327d808880ac7b889f3fc21608b2c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5934400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5934400$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Magnone, P.</creatorcontrib><creatorcontrib>Crupi, F.</creatorcontrib><creatorcontrib>Wils, N.</creatorcontrib><creatorcontrib>Jain, R.</creatorcontrib><creatorcontrib>Tuinhout, H.</creatorcontrib><creatorcontrib>Andricciola, P.</creatorcontrib><creatorcontrib>Giusi, G.</creatorcontrib><creatorcontrib>Fiegna, C.</creatorcontrib><title>Impact of Hot Carriers on nMOSFET Variability in 45- and 65-nm CMOS Technologies</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This paper examines the impact of hot carriers (HCs) on n-channel metal-oxide-semiconductor (MOS) field-effect transistor mismatch across the 45- and 65-nm complementary MOS technology generations. The reported statistical analysis is based on a large overall sample population of about 1000 transistors. HC stress introduces a source of variability in device electrical parameters due to the randomly generated charge traps in the gate dielectric or at the substrate/dielectric interface. The evolution of the threshold-voltage mismatch during an HC stress is well modeled by assuming a Poisson distribution of the induced charge traps with a nonuniform generation along the channel. Once the evolution of the HC-induced VT shift is known, a single parameter is able to accurately describe the evolution of the HC-induced VT variability. This parameter is independent of the stress time and stress bias voltage. The HC stress causes a significantly larger degradation in the subthreshold slope variability, compared to threshold voltage variability for both investigated technology nodes.</description><subject>Carriers</subject><subject>Charge</subject><subject>CMOS integrated circuits</subject><subject>CMOS technology</subject><subject>Devices</subject><subject>Electric charge</subject><subject>Evolution</subject><subject>Hot carrier (HC)</subject><subject>Logic gates</subject><subject>Mathematical models</subject><subject>metal-oxide-semiconductor field-effect transistor (MOSFET)</subject><subject>mismatch</subject><subject>MOSFET circuits</subject><subject>Semiconductor device modeling</subject><subject>Statistical analysis</subject><subject>Stress</subject><subject>Stresses</subject><subject>Studies</subject><subject>subthreshold slope</subject><subject>threshold voltage</subject><subject>Transistors</subject><subject>variability</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEURoMoWKt7wU1w42rqzWMyyVLG-oBKBavbkMlkNDKd1GS68N-bUnHh6nLhfPdxEDonMCME1PVqfjujQMiMklJwwg_QhJRlVSjBxSGaABBZKCbZMTpJ6TO3gnM6Qc-P642xIw4dfggjrk2M3sWEw4CHp-XL3XyF30z0pvG9H7-xHzAvC2yGFouyGNa4zhBeOfsxhD68e5dO0VFn-uTOfusUveYh9UOxWN4_1jeLwjIpx4K1QCoBljDSWiaakjUSFOWO04rSlgjFaNVKkFKCsVUjpepYZykRIBtqKzZFV_u5mxi-ti6Neu2TdX1vBhe2SSuiFAXIH0_R5T_yM2zjkI_TslLAGAeVIdhDNoaUouv0Jvq1id-agN4J1lmw3gnWv4Jz5GIf8c65P7xUjPO89wcOtnG5</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Magnone, P.</creator><creator>Crupi, F.</creator><creator>Wils, N.</creator><creator>Jain, R.</creator><creator>Tuinhout, H.</creator><creator>Andricciola, P.</creator><creator>Giusi, G.</creator><creator>Fiegna, C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201108</creationdate><title>Impact of Hot Carriers on nMOSFET Variability in 45- and 65-nm CMOS Technologies</title><author>Magnone, P. ; Crupi, F. ; Wils, N. ; Jain, R. ; Tuinhout, H. ; Andricciola, P. ; Giusi, G. ; Fiegna, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-3d01760c131dc36b53b80924e42722d169327d808880ac7b889f3fc21608b2c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Carriers</topic><topic>Charge</topic><topic>CMOS integrated circuits</topic><topic>CMOS technology</topic><topic>Devices</topic><topic>Electric charge</topic><topic>Evolution</topic><topic>Hot carrier (HC)</topic><topic>Logic gates</topic><topic>Mathematical models</topic><topic>metal-oxide-semiconductor field-effect transistor (MOSFET)</topic><topic>mismatch</topic><topic>MOSFET circuits</topic><topic>Semiconductor device modeling</topic><topic>Statistical analysis</topic><topic>Stress</topic><topic>Stresses</topic><topic>Studies</topic><topic>subthreshold slope</topic><topic>threshold voltage</topic><topic>Transistors</topic><topic>variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Magnone, P.</creatorcontrib><creatorcontrib>Crupi, F.</creatorcontrib><creatorcontrib>Wils, N.</creatorcontrib><creatorcontrib>Jain, R.</creatorcontrib><creatorcontrib>Tuinhout, H.</creatorcontrib><creatorcontrib>Andricciola, P.</creatorcontrib><creatorcontrib>Giusi, G.</creatorcontrib><creatorcontrib>Fiegna, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Magnone, P.</au><au>Crupi, F.</au><au>Wils, N.</au><au>Jain, R.</au><au>Tuinhout, H.</au><au>Andricciola, P.</au><au>Giusi, G.</au><au>Fiegna, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Hot Carriers on nMOSFET Variability in 45- and 65-nm CMOS Technologies</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2011-08</date><risdate>2011</risdate><volume>58</volume><issue>8</issue><spage>2347</spage><epage>2353</epage><pages>2347-2353</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This paper examines the impact of hot carriers (HCs) on n-channel metal-oxide-semiconductor (MOS) field-effect transistor mismatch across the 45- and 65-nm complementary MOS technology generations. The reported statistical analysis is based on a large overall sample population of about 1000 transistors. HC stress introduces a source of variability in device electrical parameters due to the randomly generated charge traps in the gate dielectric or at the substrate/dielectric interface. The evolution of the threshold-voltage mismatch during an HC stress is well modeled by assuming a Poisson distribution of the induced charge traps with a nonuniform generation along the channel. Once the evolution of the HC-induced VT shift is known, a single parameter is able to accurately describe the evolution of the HC-induced VT variability. This parameter is independent of the stress time and stress bias voltage. The HC stress causes a significantly larger degradation in the subthreshold slope variability, compared to threshold voltage variability for both investigated technology nodes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2011.2156414</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2011-08, Vol.58 (8), p.2347-2353
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_miscellaneous_919920038
source IEEE Electronic Library (IEL)
subjects Carriers
Charge
CMOS integrated circuits
CMOS technology
Devices
Electric charge
Evolution
Hot carrier (HC)
Logic gates
Mathematical models
metal-oxide-semiconductor field-effect transistor (MOSFET)
mismatch
MOSFET circuits
Semiconductor device modeling
Statistical analysis
Stress
Stresses
Studies
subthreshold slope
threshold voltage
Transistors
variability
title Impact of Hot Carriers on nMOSFET Variability in 45- and 65-nm CMOS Technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Hot%20Carriers%20on%20nMOSFET%20Variability%20in%2045-%20and%2065-nm%20CMOS%20Technologies&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Magnone,%20P.&rft.date=2011-08&rft.volume=58&rft.issue=8&rft.spage=2347&rft.epage=2353&rft.pages=2347-2353&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2011.2156414&rft_dat=%3Cproquest_RIE%3E919920038%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879033409&rft_id=info:pmid/&rft_ieee_id=5934400&rfr_iscdi=true