Some new solitonary solutions of the modified Benjamin–Bona–Mahony equation

In this paper, we use the exp-function method to construct some new soliton solutions of the Benjamin–Bona–Mahony and modified Benjamin–Bona–Mahony equations. These equations have important and fundamental applications in mathematical physics and engineering sciences. The exp-function method is used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2011-08, Vol.62 (4), p.2126-2131
Hauptverfasser: Noor, Muhammad Aslam, Noor, Khalida Inayat, Waheed, Asif, Al-Said, Eisa A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2131
container_issue 4
container_start_page 2126
container_title Computers & mathematics with applications (1987)
container_volume 62
creator Noor, Muhammad Aslam
Noor, Khalida Inayat
Waheed, Asif
Al-Said, Eisa A.
description In this paper, we use the exp-function method to construct some new soliton solutions of the Benjamin–Bona–Mahony and modified Benjamin–Bona–Mahony equations. These equations have important and fundamental applications in mathematical physics and engineering sciences. The exp-function method is used to find the soliton solution of a wide class of nonlinear evolution equations with symbolic computation. This method provides the concise and straightforward solution in a very easier way. The results obtained in this paper can be viewed as a refinement and improvement of the previously known results.
doi_str_mv 10.1016/j.camwa.2011.06.060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919919669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122111005414</els_id><sourcerecordid>919919669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-827fe70544da0ec636fe72180339c015392a92871001e198b5cd4fa14bd5ba5a3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAjbZsUoZ24mTLFjQij8J1AWwtlxnojpK7DZOqLrjDtyQk-BQ1khPmhnpfSO9R8glhRkFKq7rmVbtTs0YUDoDEQRHZELzjMeZEPkxmUBe5DFljJ6SM-9rAEg4gwlZvroWI4u7yLvG9M6qbj-uQ2-c9ZGron6NUetKUxksoznaWrXGfn9-zYM3jBe1dnYf4XZQI3JOTirVeLz4m1Pyfn_3tniMn5cPT4vb51hznvZxzrIKM0iTpFSAWnARTkZz4LzQQFNeMFWwPKMAFGmRr1JdJpWiyapMVypVfEquDn83ndsO6HvZGq-xaZRFN3hZ0CJIiCI4-cGpO-d9h5XcdKYNMSUFObYna_nbnhzbkyCCIFA3BwpDiA-DnfTaoNVYmg51L0tn_uV_AAF5e18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919919669</pqid></control><display><type>article</type><title>Some new solitonary solutions of the modified Benjamin–Bona–Mahony equation</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Noor, Muhammad Aslam ; Noor, Khalida Inayat ; Waheed, Asif ; Al-Said, Eisa A.</creator><creatorcontrib>Noor, Muhammad Aslam ; Noor, Khalida Inayat ; Waheed, Asif ; Al-Said, Eisa A.</creatorcontrib><description>In this paper, we use the exp-function method to construct some new soliton solutions of the Benjamin–Bona–Mahony and modified Benjamin–Bona–Mahony equations. These equations have important and fundamental applications in mathematical physics and engineering sciences. The exp-function method is used to find the soliton solution of a wide class of nonlinear evolution equations with symbolic computation. This method provides the concise and straightforward solution in a very easier way. The results obtained in this paper can be viewed as a refinement and improvement of the previously known results.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2011.06.060</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computation ; Construction ; Exp-function method ; Mathematical analysis ; Mathematical models ; Nonlinear evolution equations ; Soliton solutions ; Solitons</subject><ispartof>Computers &amp; mathematics with applications (1987), 2011-08, Vol.62 (4), p.2126-2131</ispartof><rights>2011 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-827fe70544da0ec636fe72180339c015392a92871001e198b5cd4fa14bd5ba5a3</citedby><cites>FETCH-LOGICAL-c335t-827fe70544da0ec636fe72180339c015392a92871001e198b5cd4fa14bd5ba5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2011.06.060$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Noor, Muhammad Aslam</creatorcontrib><creatorcontrib>Noor, Khalida Inayat</creatorcontrib><creatorcontrib>Waheed, Asif</creatorcontrib><creatorcontrib>Al-Said, Eisa A.</creatorcontrib><title>Some new solitonary solutions of the modified Benjamin–Bona–Mahony equation</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper, we use the exp-function method to construct some new soliton solutions of the Benjamin–Bona–Mahony and modified Benjamin–Bona–Mahony equations. These equations have important and fundamental applications in mathematical physics and engineering sciences. The exp-function method is used to find the soliton solution of a wide class of nonlinear evolution equations with symbolic computation. This method provides the concise and straightforward solution in a very easier way. The results obtained in this paper can be viewed as a refinement and improvement of the previously known results.</description><subject>Computation</subject><subject>Construction</subject><subject>Exp-function method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear evolution equations</subject><subject>Soliton solutions</subject><subject>Solitons</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAjbZsUoZ24mTLFjQij8J1AWwtlxnojpK7DZOqLrjDtyQk-BQ1khPmhnpfSO9R8glhRkFKq7rmVbtTs0YUDoDEQRHZELzjMeZEPkxmUBe5DFljJ6SM-9rAEg4gwlZvroWI4u7yLvG9M6qbj-uQ2-c9ZGron6NUetKUxksoznaWrXGfn9-zYM3jBe1dnYf4XZQI3JOTirVeLz4m1Pyfn_3tniMn5cPT4vb51hznvZxzrIKM0iTpFSAWnARTkZz4LzQQFNeMFWwPKMAFGmRr1JdJpWiyapMVypVfEquDn83ndsO6HvZGq-xaZRFN3hZ0CJIiCI4-cGpO-d9h5XcdKYNMSUFObYna_nbnhzbkyCCIFA3BwpDiA-DnfTaoNVYmg51L0tn_uV_AAF5e18</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Noor, Muhammad Aslam</creator><creator>Noor, Khalida Inayat</creator><creator>Waheed, Asif</creator><creator>Al-Said, Eisa A.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110801</creationdate><title>Some new solitonary solutions of the modified Benjamin–Bona–Mahony equation</title><author>Noor, Muhammad Aslam ; Noor, Khalida Inayat ; Waheed, Asif ; Al-Said, Eisa A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-827fe70544da0ec636fe72180339c015392a92871001e198b5cd4fa14bd5ba5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computation</topic><topic>Construction</topic><topic>Exp-function method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear evolution equations</topic><topic>Soliton solutions</topic><topic>Solitons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noor, Muhammad Aslam</creatorcontrib><creatorcontrib>Noor, Khalida Inayat</creatorcontrib><creatorcontrib>Waheed, Asif</creatorcontrib><creatorcontrib>Al-Said, Eisa A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noor, Muhammad Aslam</au><au>Noor, Khalida Inayat</au><au>Waheed, Asif</au><au>Al-Said, Eisa A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some new solitonary solutions of the modified Benjamin–Bona–Mahony equation</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2011-08-01</date><risdate>2011</risdate><volume>62</volume><issue>4</issue><spage>2126</spage><epage>2131</epage><pages>2126-2131</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, we use the exp-function method to construct some new soliton solutions of the Benjamin–Bona–Mahony and modified Benjamin–Bona–Mahony equations. These equations have important and fundamental applications in mathematical physics and engineering sciences. The exp-function method is used to find the soliton solution of a wide class of nonlinear evolution equations with symbolic computation. This method provides the concise and straightforward solution in a very easier way. The results obtained in this paper can be viewed as a refinement and improvement of the previously known results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2011.06.060</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2011-08, Vol.62 (4), p.2126-2131
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_919919669
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Computation
Construction
Exp-function method
Mathematical analysis
Mathematical models
Nonlinear evolution equations
Soliton solutions
Solitons
title Some new solitonary solutions of the modified Benjamin–Bona–Mahony equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A02%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20new%20solitonary%20solutions%20of%20the%20modified%20Benjamin%E2%80%93Bona%E2%80%93Mahony%20equation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Noor,%20Muhammad%20Aslam&rft.date=2011-08-01&rft.volume=62&rft.issue=4&rft.spage=2126&rft.epage=2131&rft.pages=2126-2131&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2011.06.060&rft_dat=%3Cproquest_cross%3E919919669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919919669&rft_id=info:pmid/&rft_els_id=S0898122111005414&rfr_iscdi=true