Rank Hierarchies for Generalized Quantifiers

We show that for each n and m, there is an existential first order sentence that is NOT logically equivalent to a sentence of quantifier rank at most m in infinitary logic augmented with all generalized quantifiers of arity at most n. We use this to show the strictness of the quantifier rank hierarc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of logic and computation 2011-04, Vol.21 (2), p.287-306
Hauptverfasser: Keisler, H. J., Lotfallah, W. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue 2
container_start_page 287
container_title Journal of logic and computation
container_volume 21
creator Keisler, H. J.
Lotfallah, W. B.
description We show that for each n and m, there is an existential first order sentence that is NOT logically equivalent to a sentence of quantifier rank at most m in infinitary logic augmented with all generalized quantifiers of arity at most n. We use this to show the strictness of the quantifier rank hierarchies for various logics ranging from existential (or universal) fragments of first-order logic to infinitary logics augmented with arbitrary classes of generalized quantifiers of bounded arity.The sentence above is also shown to be equivalent to a first-order sentence with at most n+2 variables (free and bound). This gives the strictness of the quantifier rank hierarchies for various logics with only n+2 variables. The proofs use the bijective Ehrenfeucht-Fraisse game and a modification of the building blocks of Hella.
doi_str_mv 10.1093/logcom/exq019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_919918009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>919918009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-dfaade4bbbd7f145f4c795d553b808ae731b1b6132f921c71ab028e47c98f0803</originalsourceid><addsrcrecordid>eNotkE1LxDAURYMoOFaX7rtzY533mqZtljLojDAgisLsQpK-aLUfM0kL6q-3UlcXLocL9zB2iXCDIPmy6d9s3y7p6wAoj9gCs1wkPOe7Y7YAKURSyHR3ys5C-ACANMdswa6fdfcZb2ry2tv3mkLseh-vqZuKpv6hKn4adTfUbiLCOTtxugl08Z8Re72_e1ltku3j-mF1u01smsshqZzWFWXGmKpwmAmX2UKKSghuSig1FRwNmhx56mSKtkBtIC0pK6wsHZTAI3Y17-59fxgpDKqtg6Wm0R31Y1ASpcQSps8RS2bS-j4ET07tfd1q_60Q1J8UNUtRsxT-C94sV1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919918009</pqid></control><display><type>article</type><title>Rank Hierarchies for Generalized Quantifiers</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Keisler, H. J. ; Lotfallah, W. B.</creator><creatorcontrib>Keisler, H. J. ; Lotfallah, W. B.</creatorcontrib><description>We show that for each n and m, there is an existential first order sentence that is NOT logically equivalent to a sentence of quantifier rank at most m in infinitary logic augmented with all generalized quantifiers of arity at most n. We use this to show the strictness of the quantifier rank hierarchies for various logics ranging from existential (or universal) fragments of first-order logic to infinitary logics augmented with arbitrary classes of generalized quantifiers of bounded arity.The sentence above is also shown to be equivalent to a first-order sentence with at most n+2 variables (free and bound). This gives the strictness of the quantifier rank hierarchies for various logics with only n+2 variables. The proofs use the bijective Ehrenfeucht-Fraisse game and a modification of the building blocks of Hella.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exq019</identifier><language>eng</language><subject>Computation ; Equivalence ; Games ; Hierarchies ; Logic ; Mathematical analysis ; Mathematical models ; Sentences</subject><ispartof>Journal of logic and computation, 2011-04, Vol.21 (2), p.287-306</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-dfaade4bbbd7f145f4c795d553b808ae731b1b6132f921c71ab028e47c98f0803</citedby><cites>FETCH-LOGICAL-c269t-dfaade4bbbd7f145f4c795d553b808ae731b1b6132f921c71ab028e47c98f0803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Keisler, H. J.</creatorcontrib><creatorcontrib>Lotfallah, W. B.</creatorcontrib><title>Rank Hierarchies for Generalized Quantifiers</title><title>Journal of logic and computation</title><description>We show that for each n and m, there is an existential first order sentence that is NOT logically equivalent to a sentence of quantifier rank at most m in infinitary logic augmented with all generalized quantifiers of arity at most n. We use this to show the strictness of the quantifier rank hierarchies for various logics ranging from existential (or universal) fragments of first-order logic to infinitary logics augmented with arbitrary classes of generalized quantifiers of bounded arity.The sentence above is also shown to be equivalent to a first-order sentence with at most n+2 variables (free and bound). This gives the strictness of the quantifier rank hierarchies for various logics with only n+2 variables. The proofs use the bijective Ehrenfeucht-Fraisse game and a modification of the building blocks of Hella.</description><subject>Computation</subject><subject>Equivalence</subject><subject>Games</subject><subject>Hierarchies</subject><subject>Logic</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Sentences</subject><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAURYMoOFaX7rtzY533mqZtljLojDAgisLsQpK-aLUfM0kL6q-3UlcXLocL9zB2iXCDIPmy6d9s3y7p6wAoj9gCs1wkPOe7Y7YAKURSyHR3ys5C-ACANMdswa6fdfcZb2ry2tv3mkLseh-vqZuKpv6hKn4adTfUbiLCOTtxugl08Z8Re72_e1ltku3j-mF1u01smsshqZzWFWXGmKpwmAmX2UKKSghuSig1FRwNmhx56mSKtkBtIC0pK6wsHZTAI3Y17-59fxgpDKqtg6Wm0R31Y1ASpcQSps8RS2bS-j4ET07tfd1q_60Q1J8UNUtRsxT-C94sV1o</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Keisler, H. J.</creator><creator>Lotfallah, W. B.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110401</creationdate><title>Rank Hierarchies for Generalized Quantifiers</title><author>Keisler, H. J. ; Lotfallah, W. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-dfaade4bbbd7f145f4c795d553b808ae731b1b6132f921c71ab028e47c98f0803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computation</topic><topic>Equivalence</topic><topic>Games</topic><topic>Hierarchies</topic><topic>Logic</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Sentences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keisler, H. J.</creatorcontrib><creatorcontrib>Lotfallah, W. B.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keisler, H. J.</au><au>Lotfallah, W. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rank Hierarchies for Generalized Quantifiers</atitle><jtitle>Journal of logic and computation</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>21</volume><issue>2</issue><spage>287</spage><epage>306</epage><pages>287-306</pages><issn>0955-792X</issn><eissn>1465-363X</eissn><abstract>We show that for each n and m, there is an existential first order sentence that is NOT logically equivalent to a sentence of quantifier rank at most m in infinitary logic augmented with all generalized quantifiers of arity at most n. We use this to show the strictness of the quantifier rank hierarchies for various logics ranging from existential (or universal) fragments of first-order logic to infinitary logics augmented with arbitrary classes of generalized quantifiers of bounded arity.The sentence above is also shown to be equivalent to a first-order sentence with at most n+2 variables (free and bound). This gives the strictness of the quantifier rank hierarchies for various logics with only n+2 variables. The proofs use the bijective Ehrenfeucht-Fraisse game and a modification of the building blocks of Hella.</abstract><doi>10.1093/logcom/exq019</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-792X
ispartof Journal of logic and computation, 2011-04, Vol.21 (2), p.287-306
issn 0955-792X
1465-363X
language eng
recordid cdi_proquest_miscellaneous_919918009
source Oxford University Press Journals All Titles (1996-Current)
subjects Computation
Equivalence
Games
Hierarchies
Logic
Mathematical analysis
Mathematical models
Sentences
title Rank Hierarchies for Generalized Quantifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A10%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rank%20Hierarchies%20for%20Generalized%20Quantifiers&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=Keisler,%20H.%20J.&rft.date=2011-04-01&rft.volume=21&rft.issue=2&rft.spage=287&rft.epage=306&rft.pages=287-306&rft.issn=0955-792X&rft.eissn=1465-363X&rft_id=info:doi/10.1093/logcom/exq019&rft_dat=%3Cproquest_cross%3E919918009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919918009&rft_id=info:pmid/&rfr_iscdi=true